In: Statistics and Probability
Suppose the number of radios in a household has a binomial distribution with parameters n=19 and p=15%. Find the probability of a household having:
(a) 4 or 18 radios
(b) 16 or fewer radios
(c) 14 or more radios
(d) fewer than 18 radios
(e) more than 16 radios
n = 19
P = 0.15
To find the probability for 1 radio we need to find binomial probability :
P(x) is the probability of x successes out of N trials. = probability of success on a given trial
Here N=19, = 0.15
So for x= 0
We create below table :
P(0) = 0.045599448334723 |
P(1) = 0.15289226794584 |
P(2) = 0.24282889614927 |
P(3) = 0.24282889614927 |
P(4) = 0.17140863257595 |
P(5) = 0.090745746657858 |
P(6) = 0.037365895682647 |
P(7) = 0.01224596581196 |
P(8) = 0.0032415791855188 |
P(9) = 0.00069916413805308 |
P(10) = 0.00012338190671525 |
P(11) = 1.7814499900063E-5 |
P(12) = 2.0958235176544E-6 |
P(13) = 1.9915065099884E-7 |
P(14) = 1.5061813941089E-8 |
P(15) = 8.8598905535816E-10 |
P(16) = 3.9087752442272E-11 |
P(17) = 1.2172656469912E-12 |
P(18) = 2.3867953862572E-14 |
P(19) = 2.2168378200531E-16 |
(a) Probability of household having 4 or 18 radios = P(4) + P(18)
= 0.17140863257595 + 2.3867953862572E-14
= 0.17140863257
(b) 16 or fewer
P(X≤16) = P(0)+P(1)+P(2)+P(3)+P(4)+P(5)+P(6)+P(7)+P(8)+P(9)+P(10)+P(11)+P(12)+P(13)+P(14)+P(15)+P(16)
P(X≤16) = 0.99999999999876
(c) 14 or more radios
P(X≥14) = P(14)+P(15)+P(16)+P(17)+P(18)+P(19)
P(X≥14) = 1.5988132104174E-8
(d) Fewer than 18
P(X<18) = P(0)+P(1)+P(2)+P(3)+P(4)+P(5)+P(6)+P(7)+P(8)+P(9)+P(10)+P(11)+P(12)+P(13)+P(14)+P(15)+P(16)+P(17)
P(X<18) Probability of less than 18 successes: 0.99999999999998
(e) more than 16
P(x>16) = P(17) + P(18)+P(19)
P(x>16) = 1.2413552846357E-12