In: Statistics and Probability
Suppose the number of cars in a household has a binomial
distribution
with parameters n = 9, and p = 25 %.
Find the probability of a household having:
(a) 0 or 2 cars
(b) 0 or fewer cars
(c) 4 or more cars
(d) fewer than 2 cars

![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |

Use excel formula "=BINOM.DIST(x, n, p, FALSE)"
| x | Excel formula | P(X=x) [rounded to five decimal places] |
| 0 | =BINOM.DIST(0, 9, 0.25, FALSE) | 0.07508 |
| 1 | =BINOM.DIST(1, 9, 0.25, FALSE) | 0.22525 |
| 2 | =BINOM.DIST(2, 9, 0.25, FALSE) | 0.30034 |
| 3 | =BINOM.DIST(3, 9, 0.25, FALSE) | 0.23360 |
| 4 | =BINOM.DIST(4, 9, 0.25, FALSE) | 0.11680 |



----------------------------------------------------------------------------------------


----------------------------------------------------------------------------------------






----------------------------------------------------------------------------------------



