Question

In: Advanced Math

Suppose V and V0 are finitely-generated vector spaces and T : V → V0 is a...

Suppose V and V0 are finitely-generated vector spaces and T : V → V0 is a linear transformation with ker(T) = {~ 0}. Is it possible that dim(V ) > dim(V0)? If so, provide a specific example showing this can occur. Otherwise, provide a general proof showing that we must have dim(V ) ≤ dim(V0).

Solutions

Expert Solution


Related Solutions

Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
Let V and W be Banach spaces and suppose T : V → W is a...
Let V and W be Banach spaces and suppose T : V → W is a linear map. Suppose that for every f ∈ W∗ the corresponding linear map f ◦ T on V is in V ∗ . Prove that T is bounded.
Prove that if U, V and W are vector spaces such that U and V are...
Prove that if U, V and W are vector spaces such that U and V are isomorphic and V and W are isomorphic, then U and W are isomorphic.
suppose that T : V → V is a linear map on a finite-dimensional vector space...
suppose that T : V → V is a linear map on a finite-dimensional vector space V such that dim range T = dim range T2. Show that V = range T ⊕null T. (Hint: Show that null T = null T2, null T ∩ range T = {0}, and apply the fundamental theorem of linear maps.)
1. For a map f : V ?? W between vector spaces V and W to...
1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear? 2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names...
4. Verify that the Cartesian product V × W of two vector spaces V and W...
4. Verify that the Cartesian product V × W of two vector spaces V and W over (the same field) F can be endowed with a vector space structure over F, namely, (v, w) + (v ′ , w′ ) := (v + v ′ , w + w ′ ) and c · (v, w) := (cv, cw) for all c ∈ F, v, v′ ∈ V , and w, w′ ∈ W. This “product” vector space (V ×...
Let T : V → V be a linear map. A vector v ∈ V is...
Let T : V → V be a linear map. A vector v ∈ V is called a fixed point of T if Tv = v. For example, 0 is a fixed point for every linear map T. Show that 1 is an eigenvalue of T if and only if T has nonzero fixed points, and that these nonzero fixed points are the eigenvectors of T corresponding to eigenvalue 1
V is a subspace of inner-product space R3, generated by vector u =[1 1 2]T and...
V is a subspace of inner-product space R3, generated by vector u =[1 1 2]T and v =[ 2 2 3]T. T is transpose (1) Find its orthogonal complement space V┴ ; (2) Find the dimension of space W = V+ V┴; (3) Find the angle q between u and v; also the angle b between u and normalized x with respect to its 2-norm. (4) Considering v’ = av, a is a scaler, show the angle q’ between u...
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT