Question

In: Chemistry

A and B react as follows: A + B = C + D. The equilibrium constant...

A and B react as follows: A + B = C + D. The equilibrium constant is 2.0 x 10^3. If 0.30 mol of A and 0.80 mol of B are mixed in 1 L, what are the concentrations for A, B, C, and D after reaction?

Solutions

Expert Solution

Since volume is 1 L, number of moles is same as molarity

Let's prepare the ICE table

[A] [B] [C] [D]

initial 0.3 0.8 0 0

change -1x -1x +1x +1x

equilibrium 0.3-1x 0.8-1x +1x +1x

Equilibrium constant expression is

Kc = [C]*[D]/[A]*[B]

2000.0 = (1*x)(1*x)/((0.3-1*x)(0.8-1*x))

2000.0 = (1*x^2)/(0.24-1.1*x + 1*x^2)

480-2200*x + 2000*x^2 = 1*x^2

480-2200*x + 1999*x^2 = 0

Let's solve this quadratic equation

Comparing it with general form: (ax^2+bx+c=0)

a = 1.999*10^3

b = -2.2*10^3

c = 4.8*10^2

solution of quadratic equation is found by below formula

x = {-b + √(b^2-4*a*c)}/2a

x = {-b - √(b^2-4*a*c)}/2a

b^2-4*a*c = 1.002*10^6

putting value of d, solution can be written as:

x = {2.2*10^3 + √(1.002*10^6)}/3.998*10^3

x = {2.2*10^3 - √(1.002*10^6)}/3.998*10^3

solutions are :

x = 0.8006 and x = 0.2999

x can't be 0.8006 as this will make the concentration negative.so,

x = 0.2999

At equilibrium:

[A] = 0.3-1x = 0.3-1*0.29991 = 0.00009 M

[B] = 0.8-1x = 0.8-1*0.29991 = 0.50009 M

[C] = 0+1x = 0+1*0.29991 = 0.29991 M

[D] = 0+1x = 0+1*0.29991 = 0.29991 M


Related Solutions

Using the Equilibrium Constant The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=4.6 Part...
Using the Equilibrium Constant The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=4.6 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. Part B What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Initially, only A and B...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ?
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=5.9 Initially, only A and B...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D][A][B]=5.9 Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Part B What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ?
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=5.4 PART A: Initially, only A...
The reversible chemical reaction A+B⇌C+D has the following equilibrium constant: Kc=[C][D]/[A][B]=5.4 PART A: Initially, only A and B are present, each at 2.00 M . What is the final concentration of A once equilibrium is reached? Express your answer to two significant figures and include the appropriate units. PART B: What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M ? Express your answer to two significant...
The reversible chemical reaction A+B?C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Part A Initially, only A...
The reversible chemical reaction A+B?C+D has the following equilibrium constant: Kc=[C][D][A][B]=3.4 Part A Initially, only A and B are present, each at 2.00 M. What is the final concentration of A once equilibrium is reached? Part B What is the final concentration of D at equilibrium if the initial concentrations are[A] = 1.00M and [B] = 2.00M ?
1) The reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=5.2 a) Initially, only A...
1) The reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=5.2 a) Initially, only A and B are present, each at 2.00 mol L−1. What is the final concentration of A once equilibrium is reached? b) What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 mol L−1 and [B] = 2.00 mol L−1 ?
he reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=2.4 What is the final concentration...
he reversible chemical reaction A(aq)+B(aq)⇌C(aq)+D(aq) has the following equilibrium constant: K=[C][D][A][B]=2.4 What is the final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 mol⋅L−1 and [B] = 2.00 mol⋅L−1 ?
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+DA+B⟶C+D Trial [?]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+DA+B⟶C+D Trial [?] (?)[A] (M) [?] (?)[B] (M) Rate (M/s) 1 0.4000.400 0.2000.200 0.01600.0160 2 0.4000.400 0.5400.540 0.1170.117 3 0.4800.480 0.2000.200 0.01920.0192 ?=k= Units
What is meant by chemical equilibrium? Given the following reaction: A + B <--> C +D...
What is meant by chemical equilibrium? Given the following reaction: A + B <--> C +D (reversible reaction), how would you drive the following reaction away from equilibrium to produce more of substances A and B?
Consider the cross: A/a; b/b; C/c; D/d; E/e x A/a; B/b; c/c; D/d; e/e a) what...
Consider the cross: A/a; b/b; C/c; D/d; E/e x A/a; B/b; c/c; D/d; e/e a) what proportion of the progeny will phenotypically resemble the first parent? b) what proportion of the progeny will genotypically resemble neither parent?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT