Question

In: Physics

An 80 kg construction worker sits down on a horizontal uniform steel beam of mass 1450...

An 80 kg construction worker sits down on a horizontal uniform steel beam of mass 1450 kg and length 6.0 m to eat lunch. The left end of the beam is fixed to a wall by a frictionless pivot. The right end of the beam is held up by a steel cable that makes an angle 35o with the beam and is attached to the wall somewhere above the pivot. The construction worker sits 2.0m from the steel cable’s attachment point. Assume the cable is massless and this situation is static.

(a) What is the tension in the cable?

(b) What is the vector valued force on the beam by the pivot?

Solutions

Expert Solution

Forces up and down

80*9.8+1450*9.8= T sin 35+ Npy

Forces right and left

T cos35= Npx

Moments about the pivot

T sin35*6 = 1450*9.8*3+ 80*9.8*4

a) T= 79790.6 N

b) 80*9.8+1450*9.8= T sin 35+ Npy

Npy= -30771 N (Downwards)

Nx=T cos35 = 65360.14 N

Net force= sqrt( 30771^2+65360^2) = 72241.28 N

theta= tan^-1(30771/65360) = 25.21 degrees downwar from horizontal


Related Solutions

A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform...
A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform sphere with radius 8.00 cm and mass 0.700 kg is welded to one end of the bar, and a uniform sphere with radius 6.00 cm and mass 0.580 kg is welded to the other end of the bar. The centers of the rod and of each sphere all lie along a horizontal line. Part A How far is the center of gravity of the...
A gymnast with mass m1 = 42 kg is on a balance beam that sits on...
A gymnast with mass m1 = 42 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 112 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 1) What is the force the left support exerts on the beam? N   2) What is the force the right support...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam is supported in a horizontal position by a hinge and a cable, with angle ? = 115°. (a) Draw all the forces acting on the beam. (b) Label the axis of rotation and the position vectors of each point of action. (c) What is the tension on the cable? (d) What are the magnitude of the vertical and horizontal forces acting on the hinge?...
A mass of 0.5 kg sits on a horizontal frictionless patch of ice. It is connected...
A mass of 0.5 kg sits on a horizontal frictionless patch of ice. It is connected to a spring with a with a spring constant of k=5 N/m. The spring is initially relaxed. It is then pulled to the right and stretched by 0.1 meters. It is released afterwards to return to its equilibrium position at x=0 meters. "x" is the amount of displacement. Please use conservation of energy to find the velocity of the mass at 0.08 meters.
A box of mass 18.0 kg sits at rest on a horizontal surface. The coefficient of...
A box of mass 18.0 kg sits at rest on a horizontal surface. The coefficient of kinetic friction between the surface and the box is 0.300. The box is initially at rest, and then a constant force of magnitude FF and direction 39.0 ∘∘ below the horizontal is applied to the box; the box slides along the surface. A. What is F if the box has a speed of 6.00 m/s after traveling a distance of 8.00 mm? Express your...
one end of a uniform beam of mass 5 kg is mounted at the wall by...
one end of a uniform beam of mass 5 kg is mounted at the wall by hinges and the other end is held by a cable which is connected to the ceiling. The cable forms a 60 degree angle with the horizontal beam. Applying the equilibrium condition, find the force of tension at the cable and the vertical and horizontal components of the force of the hinge Fv and Fh on the beam and indicate their directions.
A uniform horizontal 50.0 kg beam of length l= 3.50 m is at rest, supported by...
A uniform horizontal 50.0 kg beam of length l= 3.50 m is at rest, supported by a vertical rope located d =0.850 m from its left end . The right end of the beam is supported by a column which exerts an upward force on the beam a) Draw an exteded force diagram of the beam b) solve for (i) the magnitude of the tension in the rope and (ii) the force that the column exerts on the beam.
A uniform beam of mass MB = 0.8833 kg and length l = 0.8m is attached...
A uniform beam of mass MB = 0.8833 kg and length l = 0.8m is attached to a wall by a hinge at at one end and by a cord of negligible mass and length ls = 1.27 m that makes an angle ? with the horizontal at the other end (see figure drawn on the board), such that the beam is horizontal. A mass mH = 0.55 kg is hung from the beam at a distance lH = 0.6...
A person with mass m1 = 80 kg person climbs a uniform ladder with mass m2...
A person with mass m1 = 80 kg person climbs a uniform ladder with mass m2 = 40 kg and length L = 10 m long that rests against a vertical frictionless wall at an angle of θ = 70° with the floor. When the person climbs 7.0 m from the base of the ladder, the ladder starts to slip. When answering the questions, use the symbolic notations given before using numerical substitutions. B)Find the force of the wall Fw...
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor....
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor. You begin to push the sphere until it is rotating at 42.6 Hz. Assume the sphere always moves by rolling without slipping. Find the work you have done to accelerated the sphere, in J.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT