Question

In: Physics

A gymnast with mass m1 = 42 kg is on a balance beam that sits on...

A gymnast with mass m1 = 42 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 112 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.

1)

What is the force the left support exerts on the beam?

N  

2)

What is the force the right support exerts on the beam?

N  

3)

How much extra mass could the gymnast hold before the beam begins to tip?

kg  

4)

Now the gymnast (not holding any additional mass) walks directly above the right support.

What is the force the left support exerts on the beam?

N

5)

What is the force the right support exerts on the beam?

N

6)

At what location does the gymnast need to stand to maximize the force on the right support?

at the center of the beam

at the right support

at the right edge of the beam

Solutions

Expert Solution


Related Solutions

A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once the motor is activated, the cart is accelerated forward (across level ground) until it reaches the bottom of a giant circular loop with a radius of (r1=17.5 m). At this point, the motor is turned off and the cart must "coast" for the remainder of the ride. Assume the track is frictionless and ignore air resistance. At the top of the loop, what is...
An 80 kg construction worker sits down on a horizontal uniform steel beam of mass 1450...
An 80 kg construction worker sits down on a horizontal uniform steel beam of mass 1450 kg and length 6.0 m to eat lunch. The left end of the beam is fixed to a wall by a frictionless pivot. The right end of the beam is held up by a steel cable that makes an angle 35o with the beam and is attached to the wall somewhere above the pivot. The construction worker sits 2.0m from the steel cable’s attachment...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
Problem A big box of mass m1 sits on the flat surface. There is no friction...
Problem A big box of mass m1 sits on the flat surface. There is no friction between this box and the surface. A small box with mass m2 sits on top of the big one. There is friction between two boxes and the friction coefficient is µ. A force F is applied to the big box in the horizontal direction to the right. What is the maximum value of F that can be applied so that the upper box does...
A ball of mass m1 =5.2 kg and a block of mass m2 =2.0 kg are...
A ball of mass m1 =5.2 kg and a block of mass m2 =2.0 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m2 is μk = 0.4. If the magnitude of the acceleration is a=2.7 m/s2. torque_rotational a)What are the tensions T1 and T2 in the string. T1= N T2= N b)Calculate the moment of inertia...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.24 for both blocks. Determine the acceleration of the blocks.
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4...
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 3 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.44 for both blocks. Determine the acceleration of the blocks.
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1,...
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each traveled a distance h = 2.90 m, use energy content to determine the following. (a) speed v of the masses (b) magnitude of the tension T in the cord
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam is supported in a horizontal position by a hinge and a cable, with angle ? = 115°. (a) Draw all the forces acting on the beam. (b) Label the axis of rotation and the position vectors of each point of action. (c) What is the tension on the cable? (d) What are the magnitude of the vertical and horizontal forces acting on the hinge?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT