Question

In: Physics

one end of a uniform beam of mass 5 kg is mounted at the wall by...

one end of a uniform beam of mass 5 kg is mounted at the wall by hinges and the other end is held by a cable which is connected to the ceiling. The cable forms a 60 degree angle with the horizontal beam. Applying the equilibrium condition, find the force of tension at the cable and the vertical and horizontal components of the force of the hinge Fv and Fh on the beam and indicate their directions.

Solutions

Expert Solution

Since the system is in equilibrium thus Net torque of the system(due to the Tension in the cable and Weight of the beam) with respect to hinge will be 0.

Also Since the beam is uniform thus we can assume that the weight of the beam is acting at the centre of the beam. Let the length of the beam be "L" and "T" be the tension in the cable.

Then Net Torque=0

or

   (where W= Weight of the beam)

  

  

   ( where m= mass of beam and g= gravity)

  (ANS)

b). Now Using balance of Forces,

Horizontal Component of Force on hinge= Horizontal component of Tension in the cable

thus    (in outward direction following balance of forces)

(ANS)

And using balance of forces in vertical direction with Fv as the vertical component of force on hinge

  

(Considering downward direction as negative and upward direction as positive)

then

  

  (ANS)

(Negative sign shows that this vertical component of force is in downward direction)


Related Solutions

A 100 kg uniform beam is attached to a vertical wall at one end and is...
A 100 kg uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. Calculate the magnitude of the vertical component of the force that the wall exerts on the left end of the beam if the angle between the cable and horizontal is θ = 43°. The angle between the horizontal and the beam is 30 degrees.
A 1220-N uniform beam is hinged at a vertical wall at one end and is supported...
A 1220-N uniform beam is hinged at a vertical wall at one end and is supported by a cable that is attached to the beam at the other end. A 200-kg load hangs at the end of the beam. The lower end of the beam makes an angle of 30° above the horizontal, while the supporting cable is attached to the wall at an angle of 40°, as shown. (a) Calculate the magnitude of the tension in the supporting cable....
In the figure shown, one end of a uniform beam that weighs 827. N is attached to a wall with a hinge.
In the figure shown, one end of a uniform beam that weighs 827. N is attached to a wall with a hinge. The other end is held up by a wire. So the beam is in static equilibrium. There is an unknown horizontal and an unknown vertical force on the hinge.(a) Find the tension in the wire.N(b) What is the horizontal component of the force of the hinge on the beam?N(c) What is the vertical component of the force of...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam...
A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam is supported in a horizontal position by a hinge and a cable, with angle ? = 115°. (a) Draw all the forces acting on the beam. (b) Label the axis of rotation and the position vectors of each point of action. (c) What is the tension on the cable? (d) What are the magnitude of the vertical and horizontal forces acting on the hinge?...
A uniform cylinder of radius 11 cm and mass 26 kg is mounted so as to...
A uniform cylinder of radius 11 cm and mass 26 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 8.6 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular...
A uniform cylinder of radius 11 cm and mass 24 kg is mounted so as to...
A uniform cylinder of radius 11 cm and mass 24 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 4.6 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular...
A uniform cylinder of radius 14 cm and mass 27 kg is mounted so as to...
A uniform cylinder of radius 14 cm and mass 27 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 9.3 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. What is the angular velocity (in rad/s) at the instant the disk has completed four revolutions. The disk starts from rest. Group of answer choices 3.78 rad/s 3.87 rad/s 2.35...
A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall.
 Part AA 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. The mass is pulled away from the equilibrium position (x = 0) a distance of 17.5 cm and released. It then oscillates in simple harmonic motion with a frequency of 8.38 Hz. At what position, measured from the equilibrium position, is the mass 2.50 seconds after it is released?–5.23 cm16.6 cm–5.41 cm–8.84 cm–11.6 cm Part BA 23.3-kg...
A 28.0 kg beam is attached to a wall with a hinge while its far end...
A 28.0 kg beam is attached to a wall with a hinge while its far end is supported by a cable such that the beam is horizontal. If the angle between the beam and the cable is θ = 57.0° what is the vertical component of the force exerted by the hinge on the beam?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT