In: Statistics and Probability
1)If a variable X is normally distributed with a mean of 60 and a standard deviation of 15, what is
P(X > 60)
P(X > 75)
P(X > 80)
P(X < 50)
P(45 < X < 75)
P(X < 45)
Solution :
Given that ,
mean = = 60
standard deviation = = 15
1) P(x > 60) = 1 - p( x< 60)
=1- p P[(x - ) / < (60 - 60) / 15]
=1- P(z < 0.00)
Using z table,
= 1 - 0.5
= 0.5
2) P(x > 75) = 1 - p( x< 75)
=1- p P[(x - ) / < (75 - 60) / 15]
=1- P(z < 1.00)
Using z table,
= 1 - 0.8413
= 0.1587
3) P(x > 80) = 1 - p( x< 80)
=1- p P[(x - ) / < (80 - 60) / 15]
=1- P(z < 1.33)
Using z table,
= 1 - 0.9082
= 0.0918
4) P(x < 50) = P[(x - ) / < (50 - 60) / 15]
= P(z < -0.67)
Using z table,
= 0.2514
5) P( 45 < x < 75) = P[(45 - 60)/ 15) < (x - ) / < (75 - 60) / 15) ]
= P( -1.00 < z < 1.00)
= P(z < 1.00) - P(z < -1.00)
Using z table,
= 0.8413 - 0.1587
= 0.6826
6) P(x < 45) = P[(x - ) / < (45 - 60) / 15]
= P(z < -1.00)
Using z table,
= 0.1587