Question

In: Statistics and Probability

Assume that the random variable X normally distributed, with mean 90 and standard deviation 15. Compute...

Assume that the random variable X normally distributed, with mean 90 and standard deviation 15. Compute the probability P(X>102).

Solutions

Expert Solution

                               
P ( X > 102 ) = 1 - P ( X < 102 )                                   
Standardizing the value                                   
                           
Z = ( 102 - 90 ) / 15                                  
Z = 0.8                                  

P ( Z > 0.8 )                                   
P ( X > 102 ) = 1 - P ( Z < 0.8 )                                   
P ( X > 102 ) = 1 - 0.7881                                  
P ( X > 102 ) = 0.2119                                  


Related Solutions

Assume that X is normally distributed with a mean of 15 and a standard deviation of...
Assume that X is normally distributed with a mean of 15 and a standard deviation of 2. Determine the value for x that solves: P(X>x) = 0.5. P(X < 13). P(13 < X < 17).
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation σ = 7. Compute the probability. P(35<X<63)
The random variable x is normally distributed with a mean of 68 and a standard deviation...
The random variable x is normally distributed with a mean of 68 and a standard deviation of 4. Find the interquartile range (IQR)? Use R.
Assume the random variable X is normally distributed with mean =50 and standard deviation =7. Find...
Assume the random variable X is normally distributed with mean =50 and standard deviation =7. Find the 77 th percentile. The mean incubation time of fertilized eggs is 2020 days. Suppose the incubation times are approximately normally distributed with a standard deviation of 11 day. ​(a) Determine the 15th percentile for incubation times. ​(b) Determine the incubation times that make up the middle 95​%.
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7....
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7. compute the probability. P(57≤X≤66)
A random variable is normally distributed with a mean of 24 and a standard deviation of...
A random variable is normally distributed with a mean of 24 and a standard deviation of 6. If an observation is randomly selected from the​ distribution, a. What value will be exceeded 5​% of the​ time? b. What value will be exceeded 90% of the​ time? c. Determine two values of which the smaller has 20% of the values below it and the larger has 20​% of the values above it. d. What value will 10​% of the observations be​...
Assume that the random variable x is normally distributed with mean μ = 70 and standard...
Assume that the random variable x is normally distributed with mean μ = 70 and standard deviation σ = 10. Find P(x < 82) a. 0.9942 b. 0.4500 c. 0.1151 d. 0.8849
Assume the random variable X is normally​ distributed, with mean mu=49 and standard deviation sigma=7. Find...
Assume the random variable X is normally​ distributed, with mean mu=49 and standard deviation sigma=7. Find the 10 th percentile.
The variable x is normally distributed with a mean of 500 and a standard deviation of...
The variable x is normally distributed with a mean of 500 and a standard deviation of 50. Find a) The 60th percentile. b)The 35th percentile. c)The x value which exceeds 80% of all x values. d)The x value that is exceeded by 80% of all x values.
Assume that X is normally distributed with a mean of 5 and a standard deviation of...
Assume that X is normally distributed with a mean of 5 and a standard deviation of 4. Determine the value for x P(-x < X-5 < x) = 0.99 Can someone please explain in detail how to solve it with the help of the Cumulative Normal Distribution Table? Thanks!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT