Question

In: Physics

The ground state energy of an oscillating electron is 1.24 eV

The ground state energy of an oscillating electron is 1.24 eV. How much energy must be added to the electron to move it to the second excited state? The fourth excited state?

Solutions

Expert Solution

Assume the electron is confined in an infinite potential well.

The quantized energy values for the electron in such a well will be:

so, for ground state:

therefore, the 2nd excited state will have the energy,

and fourth excited state will then be:

.


Related Solutions

The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
An electron at ground state, absorbs the energy of a photon that has a frequency of...
An electron at ground state, absorbs the energy of a photon that has a frequency of 3.1573 x 1015/s, and jumps to the higher level. The same electron makes two more consecutive jumps. First, the electron jumps to another energy level by emitting a photon with a wavelength of 434.1 nm. This electron jumps immediately to the third energy level. Find the energy and the frequency of the photon which are the result of the third jump
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
How much higher in energy is this electron with respect to the ground state of H
  Part A Suppose an electron is in the n=6 energy level of a H atom. How much higher in energy is this electron with respect to the ground state of H Part B  How much additional energy is required to just remove this excited electron from the H atom?
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate...
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate the penetration depth. b) A 10.0 eV proton encountering a 10.1 eV potential energy barrier has a much smaller penetration depth than the value calculated in (a). Why? c) Give the classical penetration depth for a 10.0 eV particle hitting a 10.1 eV barrier.
Consider a hydrogen atom in the ground state. What is the energy of its electron? E=...
Consider a hydrogen atom in the ground state. What is the energy of its electron? E= J Consider a hydrogen atom in an excited state of 2s^1. What is the energy of its electron? E= J
Calculate the energy (in kJ/mol) required to remove the electron in the ground state for each...
Calculate the energy (in kJ/mol) required to remove the electron in the ground state for each of the following one-electron species using the Bohr model. (The Rydberg constant for hydrogen is approximately ?2.178 ? 10?18 J.) (a) H = ? kJ/mol (b) B^4+ = ? kJ/mol (c) Li^2+ = ? kJ/mol (d) Mn^24+ = ? kJ/mol
A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies...
A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies of the next two levels. Also indicate the degeneracy of the levels.
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron...
The fermi energy of silver is given as 5.49 eV. a) Find the densities of electron and atom per volume. b) Find the fermi velocity of electron in silver c) The current value flowing through silver is 2 A. The cross sectional area of silver is 0.5 cm2 . Find the drift velocity of electron in silver according to given conditions. d)Find the collision time T for an electron for sliver. (the definition of current density is the current per...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT