Question

In: Physics

The binding energy of an electron in the ground state in a hydrogen atom is about:...

The binding energy of an electron in the ground state in a hydrogen atom is about:

A. 13.6 eV

B. 3.4 eV

C. 10.2 eV

D. 1.0 eV

E. 27.2 eV

Solutions

Expert Solution

ANS: (A)= 13.6eV

According to the theory quantum mechanics, an electron bound to an atom can not have any value of energy, rather it can only occupy certain states which correspond to certain energy levels. The formula defining the energy levels of a Hydrogen atom are given by the equation: E = -E0/n2, where E0 = 13.6 eV (1 eV = 1.602×10-19 Joules) and n = 1,2,3… and so on. The energy is expressed as a negative number because it takes that much energy to unbind (ionize) the electron from the nucleus. It is common convention to say an unbound electron has zero (binding) energy. Because an electron bound to an atom can only have certain energies the electron can only absorb photons of certain energies exactly matched to the energy difference, or “quantum leap”, between two energy states.

When an electron absorbs a photon it gains the energy of the photon. Because an electron bound to an atom can only have certain energies the electron can only absorb photons of certain energies. For example an electron in the ground state has an energy of -13.6 eV. The second energy level is -3.4 eV. Thus it would take E2 ? E1 = -3.4 eV ? -13.6 eV = 10.2 eV to excite the electron from the ground state to the first excited state

If a photon has more energy than the binding energy of the electron then the photon will free the electron from the atom – ionizing it. The ground state is the most bound state and therefore takes the most energy to ionize.


Related Solutions

The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
Consider a hydrogen atom in the ground state. What is the energy of its electron? E=...
Consider a hydrogen atom in the ground state. What is the energy of its electron? E= J Consider a hydrogen atom in an excited state of 2s^1. What is the energy of its electron? E= J
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 5 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 4 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
The radial probability density for the electron in the ground state of a hydrogen atom has...
The radial probability density for the electron in the ground state of a hydrogen atom has a peak at about: A. 0.5pm B. 5 pm C. 50pm D. 500pm E. 5000pm ans: C Chapter
Calculate the probability of an electron in the ground state of the hydrogen atom being inside...
Calculate the probability of an electron in the ground state of the hydrogen atom being inside a sphere radius r = 2.40 ✕ 10-14 m, centered around the nucleus. (Hint: Note that r << a0.)
a) Find the energy of an electron in the n=5 state of the hydrogen atom.
a) Find the energy of an electron in the n=5 state of the hydrogen atom. b) Find the energy of an electron in the n=6 state of the hydrogen atom. c) If an electron initially in the n= 6 state falls to the n= 5 state, how much energy must the electron give up? d) If an electron initially in the n= 6 state falls to the n=5 state, what is the wavelength of the photon that will be emitted?
An electron in a hydrogen atom is excited from the n = 1 ground state to the n = 4 excited state
An electron in a hydrogen atom is excited from the n = 1 ground state to the n = 4 excited state. Classify the statements about this absorption and emission process as true or false. True On average, the electron is closer to the nucleus in the n = 4 state than in the n = 1 state. The wavelength of light absorbed when the electron is excited from the ground state to n = 4 is the same as the wavelength of...
Consider the ground state energy of the hydrogen atom E0. Enter the expression you use to...
Consider the ground state energy of the hydrogen atom E0. Enter the expression you use to verify that the ground state energy is 13.6 eV? Use fundamental constants e, me, k and h. E0 = ?
Which is not a valid quantum number for a ground state electron on an atom of...
Which is not a valid quantum number for a ground state electron on an atom of germanium? a) n=2 l=1 ml=0 ms=+1/2 b) n=4 l=3 ml=-2 ms=-1/2 c) n=4 l=1 ml=-1 ms=+1/2 d) n=3 l=0 ml=0 ms=+1/2 e) n=3 l=2 ml=1 ms=-1/2
The ground state energy of an oscillating electron is 1.24 eV
The ground state energy of an oscillating electron is 1.24 eV. How much energy must be added to the electron to move it to the second excited state? The fourth excited state?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT