Question

In: Chemistry

An electron at ground state, absorbs the energy of a photon that has a frequency of...

An electron at ground state, absorbs the energy of a photon that has a frequency of 3.1573 x 1015/s, and jumps to the higher level. The same electron makes two more consecutive jumps. First, the electron jumps to another energy level by emitting a photon with a wavelength of 434.1 nm. This electron jumps immediately to the third energy level. Find the energy and the frequency of the photon which are the result of the third jump

Solutions

Expert Solution

434.1 nm = 434.1 x 10^-9 m

Frequency of first level jump = c/l

                                              = 3 x 10^8/434.1 x 10^-9 m       

                                              = 6.9 x 10^14 s-1

So,

frequency of third jump = 3.1573 x 10^15 - 6.9 x 10^14

                                      = 2.5 x 10^15 s-1

Energy of this third photon = 6.626 x 10^-34 x 2.5 x 10^15

                                           = 1.63 x 10^-18 J


Related Solutions

An electron absorbs a photon of wavelength 2.6*10^(-5)m. If the electron has a ground (original) state...
An electron absorbs a photon of wavelength 2.6*10^(-5)m. If the electron has a ground (original) state (level) of n=3, to which level is the electron promoted?
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
A hydrogen electron in the ground state absorbs a 92.3157 nm photon to reach a higher...
A hydrogen electron in the ground state absorbs a 92.3157 nm photon to reach a higher excited state (a), and then emits two photons, one with 1.75777 x 10^-20 J of energy to reach an intermediate state (b), and one with wavelength 1005.22nm as it falls back to a lower excited state (c). Determine the three energy levels (a,b,c) of this particular electron.
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a...
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a frequency of 6.54×10^13 and then proceeds to emit another photon with a frequency of 2.98×10^14. To what energy level does the electron move?
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 5 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 4 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm. It then gives off a photon having a wavelength of 93 nm. What is the final state of the hydrogen atom? nf= ?
The ground state energy of an oscillating electron is 1.24 eV
The ground state energy of an oscillating electron is 1.24 eV. How much energy must be added to the electron to move it to the second excited state? The fourth excited state?
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
The scattered photon has an energy of 120 keV and the electron recoils with an energy...
The scattered photon has an energy of 120 keV and the electron recoils with an energy of 40 keV in Compton scattering. Find: (a) the incident photo wavelength (b) the scattering angle of the photon (c) the angle at which the electron recoils
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT