Question

In: Chemistry

Calculate the energy (in kJ/mol) required to remove the electron in the ground state for each...

Calculate the energy (in kJ/mol) required to remove the electron in the ground state for each of the following one-electron species using the Bohr model. (The Rydberg constant for hydrogen is approximately ?2.178 ? 10?18 J.)

(a) H = ? kJ/mol

(b) B^4+ = ? kJ/mol

(c) Li^2+ = ? kJ/mol

(d) Mn^24+ = ? kJ/mol

Solutions

Expert Solution


Related Solutions

The minimum energy required to remove the electron from a particular excited state of Li2+ is...
The minimum energy required to remove the electron from a particular excited state of Li2+ is 327.9 kJ/mol. a. What was the value of n for the excited state orbital that the electron came from? b. For the energy level you determined in part a, what is the total orbital degeneracy, and what is the highest possible value of the angular momentum quantum number for this value of n?
1) The ionization energy of an atom is the energy required to remove an electron from...
1) The ionization energy of an atom is the energy required to remove an electron from the atom in the gaseous state. Arrange the following elements in order of decreasing ionization energy. molybdenum silver germanium phosphorus strontium 2) The metallic character of an element is defined as the properties typical of a metal, especially the tendency to lose electrons in chemical reactions. Arrange the following elements in order of decreasing metallic character. F Cr P Zn Ca Cs S
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
The ground state energy of an oscillating electron is 1.24 eV
The ground state energy of an oscillating electron is 1.24 eV. How much energy must be added to the electron to move it to the second excited state? The fourth excited state?
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
An electron at ground state, absorbs the energy of a photon that has a frequency of...
An electron at ground state, absorbs the energy of a photon that has a frequency of 3.1573 x 1015/s, and jumps to the higher level. The same electron makes two more consecutive jumps. First, the electron jumps to another energy level by emitting a photon with a wavelength of 434.1 nm. This electron jumps immediately to the third energy level. Find the energy and the frequency of the photon which are the result of the third jump
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
The energy required to remove an electron from a surface of a solid element is called...
The energy required to remove an electron from a surface of a solid element is called its work function. If a minimum of 226.7 kJ/mol is required to remove electrons from Li atoms on a surface of a sample of lithium, what is the maximum wavelength (λmax) of light that can remove an electron from a Li atom on this surface? 5.277×102 nm 1pts You are correct. Your receipt no. is 155-2060 Previous Tries If the same lithium surface is...
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the...
Calculate the total binding energy in kJ per mole nuclide and in kJ/mol nucleons for the following nuclides, using the data given below. Nuclide Total binding energy kJ/mol nuclide kJ/mol nucleons (a) 12 6 C (b) 17 8 O (c) 234 90 Th Particle or atom Mass (u) proton 1.00728 neutron 1.00866 electron 0.00055 12 6 C 12.00000 17 8 O 16.99913 234 90 Th 234.04360 1 u = 1.66054×10-27 kg
How much higher in energy is this electron with respect to the ground state of H
  Part A Suppose an electron is in the n=6 energy level of a H atom. How much higher in energy is this electron with respect to the ground state of H Part B  How much additional energy is required to just remove this excited electron from the H atom?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT