Question

In: Advanced Math

find the particular solution for: y'' - 4y' - 12y = e2x(-3x2 + 4x + 5)...

find the particular solution for:

y'' - 4y' - 12y = e2x(-3x2 + 4x + 5) (hint: try y= ue2x then use: u = Ax2 + Bx + C)

Solutions

Expert Solution


Related Solutions

In Exercises 1–59 find a particular solution y'''+3y''+4y'+12y=8cos2x - 16sin2x
In Exercises 1–59 find a particular solution y'''+3y''+4y'+12y=8cos2x - 16sin2x
Find a particular solution to y” + 4y = 16t sin(2t)
Find a particular solution to y” + 4y = 16t sin(2t)
Find the particular solution: y″−4y′+4y=(−11.5e^(2t))/(t^(2)+1)
Find the particular solution: y″−4y′+4y=(−11.5e^(2t))/(t^(2)+1)
A. Find a particular solution to the nonhomogeneous differential equation y′′ + 4y′ + 5y =...
A. Find a particular solution to the nonhomogeneous differential equation y′′ + 4y′ + 5y = −15x + e-x y = B. Find a particular solution to y′′ + 4y = 16sin(2t). yp = C. Find y as a function of x if y′′′ − 10y′′ + 16y′ = 21ex, y(0) = 15,  y′(0) = 28, y′′(0) = 17. y(x) =
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0...
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0                                           COMPUTE:               L {7 e 3t – 5 cos ( 2t ) – 4 t 2 }                  COMPUTE:              L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ] }            SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE TRANSFORMS:              Y” + 6Y’ + 5Y = 12 e t       WHEN :   f ( 0 ) = -...
Find a particular solution to y′′+4y′+4y=(e^−2x)/x^4 using variation of parameters yp= ?
Find a particular solution to y′′+4y′+4y=(e^−2x)/x^4 using variation of parameters yp= ?
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
Find the particular solution to the equation. y''-4y'+5y=(e^(2t))(sec(t))
y''+4y'+4y=2e^{-2x} Find general solution.
y''+4y'+4y=2e^{-2x} Find general solution.
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b)...
Find a particular solution to the non-homogeneous differential equation: (a) y'' − 4y = 4t^2 (b) y '' − 4y = sin(2t) (c) y '' + 4y = sin(2t) (d) y '' + y = cos(t)
find the general solution y'''-y''-4y'+4y=5-e^x-4e^2x (UNDETERMINED COEFFICIENTS—SUPERPOSITION APPROACH)
find the general solution y'''-y''-4y'+4y=5-e^x-4e^2x (UNDETERMINED COEFFICIENTS—SUPERPOSITION APPROACH)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT