In: Math
Standardized stock price indicators in three different countries over a week are listed below. An analyst is interested in knowing if the stock markets of these different countries are dependent on one another. The data set and a partial ANOVA table for this study are provided below. I II III 890 900 905 899 900 900 900 887 896 905 906 928 871 893 899 910 900 934 Source of variation SS DF MS F Treatment 748 2 374 ??? Error 2526 ??? ??? Total 3274 ???
Compute the MSE and the F statistic
| 
 MSE = 374. F = 2.22  | 
|||||||||||||||||||||||||||||||||||||||||
| 
 MSE = 168.4. F = 2.22  | 
|||||||||||||||||||||||||||||||||||||||||
| 
 MSE = 2.22. F = 15  | 
|||||||||||||||||||||||||||||||||||||||||
| 
 MSE = 2,526. F = 2.22  | 
|||||||||||||||||||||||||||||||||||||||||
| 
 None of the above Suppose the p-value for the test is 0.143. At the 0.05 level of significance, how do you conclude? 
  | 
| Source | SS | df | MS | F | 
| treatment | 748 | 2 | 374 | 2.22 | 
| error | 2526 | 15 | 168.4 | |
| total | 3274 | 17 | 
1)
MSE = 168.4. F = 2.22
2)
Do not reject H0. There is no evidence that the means are significantly different
3)
| pooled standard deviation =Sp =√MSE = | 12.976 | |||||
| critical value of q with 0.05 level and at k=3 and N-k=15 degree of freedom= | 3.673 | |||||
| Tukey's (HSD) for group i and j = (q/√2)*(sp*√(1/ni+1/nj) = | 19.44 | |||||
4)
None is significant