Question

In: Math

A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...

A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 8 inches below the equilibrium position.

(a) Find the position x of the mass at the times

t = π/12, π/8, π/6, π/4, and 9π/32 s.

(Use

g = 32 ft/s2

for the acceleration due to gravity.)

x(π/12) =

−14​

   ft
x(π/8) =

−.5

   ft
x(π/6) =

−0.25

   ft
x(π/4) =

0.5

   ft
x(9π/32) =

0.35

   ft



(b) What is the velocity of the mass when

t = 3π/16 s?

4

   ft/s

In which direction is the mass heading at this instant?

upward

downward

    
(c) At what times does the mass pass through the equilibrium position?

0

   ,  n = 0, 1, 2,  

Solutions

Expert Solution


Related Solutions

A mass weighing 8 pounds stretches a spring 1 foot. The mass is initially released from...
A mass weighing 8 pounds stretches a spring 1 foot. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 2 times the instantaneous velocity. Find the equation of motion (solve the IVP) if the mass is driven by an external force equal to f(t) = 5 cos(2t). Graph the solution. What part of the...
A mass weighing 12 pounds stretches a spring 2 feet. The mass is initially released from...
A mass weighing 12 pounds stretches a spring 2 feet. The mass is initially released from a point 1 foot below equilibrium with an upward velocity of 4 ft/s. (a) Find the equation of motion (b) In correct units, what are the amplitude, period, and frequency of this simple harmonic motion? (c) What is the velocity of the mass at ? = 3? 16 seconds? (d) Find the first three times that the velocity is zero, expressed both in exact...
A mass weighing 32 pounds stretches a spring 16 feet. The mass is initially released from...
A mass weighing 32 pounds stretches a spring 16 feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion if the mass is driven by an external force equal to f(t)=10cos(3t).
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 5 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 7 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 25 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A) A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released...
A) A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 4 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass id riven by an external force equal to f(t) = 20 cos 3t use g=32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 7 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 25 cos 3t. (Use g = 32 ft/s2 for the...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 5 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT