Question

In: Physics

A mass weighing 4 pounds stretches a spring 4/3 ft. The entire system is immersed in...

A mass weighing 4 pounds stretches a spring 4/3 ft. The entire system is immersed in a fluid offering a damping force numerically equal to the instantaneous velocity. Beginning at t=0, an external force equal to f(t)=e^-t is impressed on the system. Determine an initial valued differential equation for the displacement of the mass from its equilibrium point at time t>0.

Solutions

Expert Solution


Related Solutions

A mass weighing 10 pounds stretches a spring 3 inches. This mass is removed and replaces...
A mass weighing 10 pounds stretches a spring 3 inches. This mass is removed and replaces with a mass weighing 20 pounds, which is initially released from a point 4 inches above the equilibrium position with an upward velocity of 54 ft/s. Find the equation of motion, x(t) .
A mass weighing 8 pounds stretches a spring 4 feet. The medium through the mass moves...
A mass weighing 8 pounds stretches a spring 4 feet. The medium through the mass moves offers a damping force numerically equal to sqrt(2) times the instantaneous velocity. Find the equation of motion if mass is released from equilibrium position with a downward velocity of 5 ft/s. Find the time at which the mass attains its extreme displacement from the equilibrium position. What is the position of the mass at this instant? The acceleration of gravity is g = 32...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 7 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 25 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A) A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released...
A) A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 4 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass id riven by an external force equal to f(t) = 20 cos 3t use g=32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 7 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 25 cos 3t. (Use g = 32 ft/s2 for the...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 5 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 5 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration due to...
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially...
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially released from rest from a point 1 ft below the equilibrium position, and the subsequent movement takes place in a medium that offers a damping force equal to the instantaneous velocity. Using differential equations find the position of the mass at time t if an external force equal to f (t) = 10cos (t) is applied to the mass
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT