In: Statistics and Probability
Find ?? from the following probabilities: if μ=160, σ=16
a) P(X>x0) =0.8770
b) P(X<x0) =0.12
c) P(X<x0) =0.97
d) P(136≤X≤x0) =0.4808
e) P(x0≤X≤204) =0.8185
f) P(180≤X≤x0) =0.0919
P(X < x0) = P(Z < (A - )/)
= 160
= 16
a) P(X > x0) = 0.8770
P(X < x0) = 1 - 0.8770 = 0.1230
P(Z < (x0 - 160)/16) = 0.1230
(x0 - 160)/16 = -1.16
x0 = 141.44
b) P(X < x0) = 0.12
P(Z < (x0 - 160)/16) = 0.12
(x0 - 160)/16 = -1.175
x0 = 141.2
c) P(X < x0) = 0.97
P(Z < (x0 - 160)/16) = 0.97
(x0 - 160)/16 = 1.88
x0 =190.08
d) P(136≤X≤x0) =0.4808
P(X < x0) - P(X < 136) = 0.4808
P(X < x0) - P(Z < (136 - 160)/16) = 0.4808
P(X < x0) - P(Z < -1.5) = 0.4808
P(X < x0) - 0.0668 = 0.4808
P(X < x0) = 0.5476
P(Z < (x0 - 160)/16) = 0.5476
(x0 - 160)/16 = 0.12
x0 = 161.92
e) P(x0≤X≤204) =0.8185
P(X < 204) - P(X < x0) = 0.8185
P(Z < (204 - 160)/16) - P(X < x0) = 0.8185
P(Z < 2.75) - P(X < x0) = 0.8185
0.9970 - P(X < x0) = 0.8185
P(X < x0) = 0.1785
P(Z < (x0 - 160)/16) = 0.1785
(x0 - 160)/16 = -0.92
x0 = 145.28
f) P(180≤X≤x0) =0.0919
P(X < x0) - P(X < 180) = 0.0919
P(X < x0) - P(Z < (180 - 160)/16) = 0.0919
P(X < x0) - P(Z < 1.25) = 0.0919
P(X < x0) - 0.8944 = 0.0919
P(X < x0) = 0.9863
P(Z < (x0 - 160)/16) = 0.9863
(x0 - 160)/16 = 2.21
x0 = 195.36