Question

In: Physics

A rock is suspended by a light string. When the rock is in air, the tension...

A rock is suspended by a light string. When the rock is in air, the tension in the string is 39.2 N. When the rock is totally immersed in water, the tension is 28.4 N. When the rock is totally immersed in an unknown liquid, the tension is 18.6 N. What is the Density of the unknown liquid. -When I looked at this problem, I though we needed to know the volume of the rock. Can someone show me how to do it without the volume of this rock?

Solutions

Expert Solution

Concepts and reason

The concepts used to solve this problem are newton’s second law, tension force, and archimedes principle.

First find the real weight of the rock by equating the tension of string in air and force using Newton’s second law.

Then find the volume of the rock by equating the calculated tension in water and subtracted buoyant force from mass of the rock using archimedes principle.

Finally find the density of unknown liquid by equating the calculated tension of liquid and subtracted buoyant force of liquid from the mass of the rock using archimedes principle.

Fundamentals

A body experiences an upward force when it is immersed in a liquid. This force will be equal to the weight of the fluid displaced by the body when it is partially or fully immersed in the liquid. This upward force exerted by the fluid on the body is known as the Buoyant force.

When a body is fully immersed in a liquid, the volume of the displaced fluid is equal to the volume of the body. Buoyant force on a submerged body is in the direction opposite to gravity and its magnitude is given as,

FB=ρfVg{F_{\rm{B}}} = {\rho _{\rm{f}}}Vg

Here, ρf{\rho _{\rm{f}}} is the density of the fluid, V is the volume of the displaced fluid which is equal to the volume of the submerged body, and g is acceleration due to gravity.

An object is in translational equilibrium when the sum of all the forces acting on the object is zero.

ΣF=0\Sigma F = 0

When the body is released from the height vertically downward towards the surface of the earth,the force of gravitational attraction will excert on the body by the earth.

The following figure shows the free body diagram of the rock. A rock of mass m is attached to the string by fixing one end. The tension in the string is acting in the upward direction and the weight of the rock ( W) acts in the downward direction.

The weight of the rock is given as,

W=mgW = mg

Here, m is the mass of the rock and g is acceleration due to gravity.

The net force acting on the rock is,

ΣF=Tairmg\Sigma F = {T_{{\rm{air}}}} - mg

The rock is in translational equilibrium. Thus, the sum of all the forces acting on the rock is zero.

ΣF=0\Sigma F = 0

Substitute Tairmg{T_{{\rm{air}}}} - mg for ΣF\Sigma F in the equation ΣF=0\Sigma F = 0 and solve for mgmg .

Tairmg=0mg=Tair\begin{array}{c}\\{T_{{\rm{air}}}} - mg = 0\\\\mg = {T_{{\rm{air}}}}\\\end{array}

Substitute 39.2N39.2\,{\rm{N}} for Tair{T_{air}} in the equation mg=Tairmg = {T_{{\rm{air}}}} .

mg=39.2Nmg = 39.2\,{\rm{N}}

According to archimedes principle the object partially or completely immersed in a fluid will be buoyed up by a force.

The buoyed force will be equal to the fluid displaced by the object.

The following figure shows the free body diagram for the rock when it is totally immersed in water. When the rock is immersed in the liquid, the rock will experience an upward buoyant force. Tension in the string also is acting in the upward direction and the weight of the rock acts in the downward direction.

The net force acting on the rock is,

ΣF=Twater+FBmg\Sigma F = {T_{{\rm{water}}}} + {F_{\rm{B}}} - mg

Here, FB{F_{\rm{B}}} is the buoyant force acting on the rock.

The rock is in translational equilibrium. Thus, the sum of all the forces acting on the rock is zero.

ΣF=0\Sigma F = 0

Substitute Twater+FBmg{T_{{\rm{water}}}} + {F_{\rm{B}}} - mg for ΣF\Sigma F in the equation ΣF=0\Sigma F = 0 and solve for Twater{T_{{\rm{water}}}} .

Twater+FBmg=0Twater=mgFB\begin{array}{c}\\{T_{{\rm{water}}}} + {F_{\rm{B}}} - mg = 0\\\\{T_{{\rm{water}}}} = mg - {F_{\rm{B}}}\\\end{array}

Substitute Vrockρwaterg{V_{{\rm{rock}}}}{\rho _{{\rm{water}}}}g for FB{F_{\rm{B}}} in the equation Twater=mgFB{T_{{\rm{water}}}} = mg - {F_{\rm{B}}} and solve for Vrock{V_{{\rm{rock}}}} .

Twater=mgVrockρwatergVrock=mgTwaterρwaterg\begin{array}{c}\\{T_{{\rm{water}}}} = mg - {V_{{\rm{rock}}}}{\rho _{{\rm{water}}}}g\\\\{V_{{\rm{rock}}}} = \frac{{mg - {T_{{\rm{water}}}}}}{{{\rho _{{\rm{water}}}}g}}\\\end{array}

Here, Vrock{V_{{\rm{rock}}}} is the volume of the rock and ρwater{\rho _{{\rm{water}}}} is the density of water.

Substitute 39.2N39.2\,{\rm{N}} for mgmg , 28.4N28.4\,{\rm{N}} for Twater{T_{{\rm{water}}}} , 1000kg/m31000\,{\rm{kg/}}{{\rm{m}}^3} for ρwater{\rho _{{\rm{water}}}} , and 9.8m/s29.8\,{\rm{m/}}{{\rm{s}}^2} for gg in the equation Vrock=mgTwaterρwaterg{V_{{\rm{rock}}}} = \frac{{mg - {T_{{\rm{water}}}}}}{{{\rho _{{\rm{water}}}}g}} .

Vrock=39.2N28.4N(1000kg/m3)(9.8m/s2)Vrock=1.102×103m3\begin{array}{c}\\{V_{{\rm{rock}}}} = \frac{{39.2\,{\rm{N}} - 28.4\,{\rm{N}}}}{{\left( {1000\,{\rm{kg/}}{{\rm{m}}^3}} \right)\left( {9.8\,{\rm{m/}}{{\rm{s}}^2}} \right)}}\\\\{V_{{\rm{rock}}}} = 1.102 \times {10^{ - 3}}\,{{\rm{m}}^3}\\\end{array}

(3)

The expression for the tension in unknown liquid is,

Tliquid=mgFB,liquid{T_{{\rm{liquid}}}} = mg - {F_{B,{\rm{liquid}}}}

Here, FB,liquid{F_{B,{\rm{liquid}}}} is the buoyant force on the rock when it is immersed in an unknown liquid.

Substitute Vrockρliquidg{V_{{\rm{rock}}}}{\rho _{{\rm{liquid}}}}g for FB,liquid{F_{B,{\rm{liquid}}}} in the above equation and solve for ρliquid{\rho _{{\rm{liquid}}}} .

Tliquid=mgVrockρliquidgρliquid=mgTliquidVrockg\begin{array}{c}\\{T_{{\rm{liquid}}}} = mg - {V_{{\rm{rock}}}}{\rho _{{\rm{liquid}}}}g\\\\{\rho _{{\rm{liquid}}}} = \frac{{mg - {T_{{\rm{liquid}}}}}}{{{V_{{\rm{rock}}}}g}}\\\end{array}

Substitute 39.2N39.2\,{\rm{N}} for mgmg , 18.6N18.6\,{\rm{N}} for Tliquid{T_{{\rm{liquid}}}} , 1.102×103m31.102 \times {10^{ - 3}}\,{{\rm{m}}^3} for Vrock{V_{{\rm{rock}}}} , and 9.8m/s29.8\,{\rm{m/}}{{\rm{s}}^2} for gg in the equation ρliquid=mgTliquidVrockg{\rho _{{\rm{liquid}}}} = \frac{{mg - {T_{{\rm{liquid}}}}}}{{{V_{{\rm{rock}}}}g}} .

ρliquid=39.2N18.6N(1.102×103m3)(9.8m/s2)ρliquid=1.91×103kg/m3\begin{array}{c}\\{\rho _{{\rm{liquid}}}} = \frac{{39.2\,{\rm{N}} - 18.6\,{\rm{N}}}}{{\left( {1.102 \times {{10}^{ - 3}}\,{{\rm{m}}^3}} \right)\left( {9.8\,{\rm{m/}}{{\rm{s}}^2}} \right)}}\\\\{\rho _{{\rm{liquid}}}} = 1.91 \times {10^3}\,{\rm{kg/}}{{\rm{m}}^3}\\\end{array}

Ans:

The density of unknown liquid is 1.91×103kg/m31.91 \times {10^3}\,{\rm{kg/}}{{\rm{m}}^3} .


Related Solutions

A rock is suspended by a light string. When the rock is in air, the tension...
A rock is suspended by a light string. When the rock is in air, the tension in the string is 52.9 N . When the rock is totally immersed in water, the tension is 32.6 N . When the rock is totally immersed in an unknown liquid, the tension is 14.4 N . What is the density of the unknown liquid?
A rock is suspended by a light string. When the rock is in air, the tension in the string is 39.2 N.
A rock is suspended by a light string. When the rock is in air, the tension in the string is 39.2 N. When the rock is totally immersed in water, the tension is 28.4 N. When the rock is totally immersed in an unknown liquid, the tension is 18.6 N. What is the Density of the unknown liquid. 
A large crate is suspended by a light string. A bullet is fired horizontally into the...
A large crate is suspended by a light string. A bullet is fired horizontally into the crate and becomes firmly lodged inside it. After being struck by the bullet, the crate swings upward to a maximm height and then swings back up. Just before the collision (time t1), the crate is at rest and the bullet moves horizontally with speed v0. Immediately after the bullet becomes lodged inside the crate (time t2) the bullet and crate move together with speed...
A 8.9 kg rock whose density is 4500 kg/m3 is suspended by a string such that...
A 8.9 kg rock whose density is 4500 kg/m3 is suspended by a string such that half of the rock's volume is under water. What is the tension in the string?
A thin film suspended in air is 0.400 µm thick and is illuminated with white light...
A thin film suspended in air is 0.400 µm thick and is illuminated with white light incident perpendicularly on its surface. The index of refraction of the film is 1.58. At what wavelength will visible light that is reflected from the two surfaces of the film undergo fully constructive interference?
An ore sample weighs 17.50 N in air. when the sample is suspended
An ore sample weighs 17.50 N in air. when the sample is suspended by a light cord and totally immersed in water the tension in the cord is 11.20 N. Find the total volume and density of the sample.  
The critical angle for an air-glass interface is 25.3°. When a light ray in air is...
The critical angle for an air-glass interface is 25.3°. When a light ray in air is incident on the interface, the reflected ray is 100% polarized. What is the angle of refraction of that ray?
Tension is maintained in a string as in the figure below. The observed wave speed is...
Tension is maintained in a string as in the figure below. The observed wave speed is v = 23.5 m/s when the suspended mass is m = 3.00 kg.  What is the mass per unit length of the string?  kg/m  What is the wave speed when the suspended mass is m = 2.15 kg?  m/s
Analyze the motion of a circular pendulum and calculate the length and tension in the string....
Analyze the motion of a circular pendulum and calculate the length and tension in the string. Assume the mass of the pendulum bob is 0.5 kg. the period of the pendulum is 1.19 s. and the radius of the circle is 20 cm, determine the approximate radius of the circle the pendulum sweeps out. Perform a force analysis on the pendulum bob. What is the tension in the string?
A rock weighing 25-N is thrown vertically into the air from ground level. when it reaches...
A rock weighing 25-N is thrown vertically into the air from ground level. when it reaches 15.0 m above ground, it is traveling at 25.0 m/s upward. Use the work-energy to find: a) the rock's speed just as it left the ground b) its maximum height
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT