Question

In: Mechanical Engineering

A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on...

A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on both sides of the plate where the bottom side absorbs a uniform radiative heat flux of 1542 W/m2. The plate is oriented parallel to the flow and the length along the flow direction is 60 cm. Consider the plate is negligibly thin and the width of the plate (perpendicular to the flow) is large, so that the problem can be considered as a 2D problem.
1. If the temperature of the plate is not to exceed 80°C at any position, what air velocity would be required? Evaluate the air properties at 310 K. (3 pts)
2. Using the velocity calculated in part 1, find an expression for the heat transfer coefficient (h) and surface temperature (Ts) as a function of distance from the leading edge (x). Graph h and Ts for x = 1 ~ 60 cm.
3. If the length of the plate increases to 1.2 m and other conditions (including the air properties) remain the same as in parts 1 and 2, what is the surface temperature at the end of the plate? Graph h and Ts for x = 0.6 ~ 1.2 m

Solutions

Expert Solution


Related Solutions

Forced convection A thin plate is suspended in air at 1 atm. with T? = 15°C....
Forced convection A thin plate is suspended in air at 1 atm. with T? = 15°C. Air flows on both sides of the plate where the bottom side absorbs a uniform radiative heat flux of 1542 W/m2. The plate is oriented parallel to the flow and the length along the flow direction is 60 cm. Consider the plate is negligibly thin and the width of the plate (perpendicular to the flow) is large, so that the problem can be considered...
Air at 1 atm and 27 degree C flows across a flat plate at a velocity...
Air at 1 atm and 27 degree C flows across a flat plate at a velocity of 14 m/s. Find the distance from the leading edge where transition to turbulent flow begins and the local heat-transfer coefficient at this point if the temperature of the plate is 77 degree C.
Air at 15°C flows at 9 m/s parallel to a thin flat plate measuring 260 mm...
Air at 15°C flows at 9 m/s parallel to a thin flat plate measuring 260 mm × 390 mm. The direction of flow is parallel to the 260-mm edges. The surface of the plate is at a uniform temperature of 85°C. The plate is in a large chamber with walls at a temperature of 22°C. The emissivity of the plate’s surfaces is 0·75. (a) Determine the rate of convective heat transfer from one side of the plate to air. [16]...
Air, at p = 1 atm and a temperature of 60 ° C enters a thin-walled...
Air, at p = 1 atm and a temperature of 60 ° C enters a thin-walled (d = 5.0 mm) and long (l = 3 m) tube. A constant thermal flow is applied to the air from the tube walls. The mass air flow is 1.5x10^(-04) kg / s. If the temperature on the surface of the tube at its outlet is 120 ° C, determine the rate of heat transfer entering the tube. Use the air properties for 400...
Air at 10°C and I atm flows over a flat plate (30 cm x100 cm) at...
Air at 10°C and I atm flows over a flat plate (30 cm x100 cm) at 20 m/s. The plate is maintained at 70°C. (a) calculate the boundary layer thikness at distances of 30 cm and 100 cm, (b) calculate the heat transfer from first 30 cm and from whole the plate.
The air, which has a temperature of 120 ° C, flows over a plate with a...
The air, which has a temperature of 120 ° C, flows over a plate with a length of 1.2 m and a constant temperature of 30 ° C across the surface, and its speed flows at a speed of 2 m / s. According to this, a.) Calculate the speed and temperature boundary layer thickness at the end of the plate. b.) Find the local heat transfer coefficient and heat flux at the end of the plate. c.) Find the...
Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere...
Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere has a diameter of 10mm and its initial temperature is 134°C. If the density, specific heat, and conductivity of the sphere are 7832 kg/m”, 549 J/kg.K, and 49.2 W/m.K, respectively, calculate the temperature at the center of the sphere after 100 seconds.
Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity...
Moist air enters an adiabatic humidifier system at 1 atm, 15 °C, with a relative humidity of 20%. The volumetric flow rate of the incoming moist air is 150 m3/min. Saturated water vapor at 1 atm is injected into the flow such that the outlet temperature is 30 °C and the outlet relative humidity is 40%. The pressure is constant in the humidifier system. Determine the mass flow rate of the saturated water vapor entering the humidifier at state 3,...
A thin film suspended in air is 0.400 µm thick and is illuminated with white light...
A thin film suspended in air is 0.400 µm thick and is illuminated with white light incident perpendicularly on its surface. The index of refraction of the film is 1.58. At what wavelength will visible light that is reflected from the two surfaces of the film undergo fully constructive interference?
1000 SFCM of air enters an ammonium nitrate prilling tower at 15 C and 2 atm...
1000 SFCM of air enters an ammonium nitrate prilling tower at 15 C and 2 atm pressure with a relative humidity of 80%. Calculate the entering water flow in lbm/hr.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT