In: Math
We know that \(E(\bar{X})=\mu\) \(V(X)=\frac{\sigma^{2}}{n}\)
and \(V(X)=E\left(X^{2}\right)-[E(X)]^{2}\)
\(\Rightarrow E\left(X^{2}\right)=V(X)+[E(X)]^{2}\)
\(\therefore E\left(\bar{X}^{2}\right)=V(\bar{X})+[E(\bar{X})]^{2}\)
\(\quad=\frac{\sigma^{2}}{n}+\mu^{2}\)
\(\neq \mu\)
THerefore \(\bar{X}^{2}\) is not an unbiased estimator for \(\mu^{2}\)
(b) Now, E \(\left[\bar{X}^{2}-K S^{2}\right]=\mathrm{E}\left(\bar{X}^{2}\right)-k E\left(S^{2}\right)\)
\(=\frac{\sigma^{2}}{n}+\mu^{2}-k \sigma^{2}\)
For, \(\bar{X}^{2}-K S^{2}\) to be an unbiased estimate for \(\mu^{2}\) \(E\left[\bar{X}^{2}-K S^{2}\right]=\mu^{2}\)
Thus, \(\frac{\sigma^{2}}{n}+\mu^{2}-k \sigma^{2}=\mu^{2}\)
\(\Rightarrow \frac{\sigma^{2}}{n}=k \sigma^{2}\)
\(\Rightarrow k=\frac{1}{n}\)