In: Statistics and Probability
Quarter | Year 1 | Year 2 | Year 3 |
1 | 3 | 6 | 8 |
2 | 2 | 4 | 8 |
3 | 4 | 7 | 9 |
4 | 6 | 9 | 11 |
(b) | Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. |
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) If the constant is "1" it must be entered in the box. Do not round intermediate calculation. | |
ŷ = +___ Qtr1 + ___ Qtr2 + ___ Qtr3 |
Compute the quarterly forecasts for next year based on the model you developed in part (b). | ||||||||||||||||
If required, round your answers to three decimal places. Do not round intermediate calculation. | ||||||||||||||||
|
Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (b) to capture seasonal effects and create a variable t such that t = 1 for Quarter 1 in Year 1, t = 2 for Quarter 2 in Year 1,… t = 12 for Quarter 4 in Year 3. | |
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) | |
ŷ = + __ Qtr1 +__ Qtr2 +__ Qtr3 +___ t |
|
Is the model you developed in part (b) or the model you developed in part (d) more effective? | |||||||
If required, round your intermediate calculations and final answer to three decimal places. | |||||||
|
b)
DATA
y | t | Q1 | Q2 | Q3 |
3 | 1 | 1 | 0 | 0 |
2 | 2 | 0 | 1 | 0 |
4 | 3 | 0 | 0 | 1 |
6 | 4 | 0 | 0 | 0 |
6 | 5 | 1 | 0 | 0 |
4 | 6 | 0 | 1 | 0 |
7 | 7 | 0 | 0 | 1 |
9 | 8 | 0 | 0 | 0 |
8 | 9 | 1 | 0 | 0 |
8 | 10 | 0 | 1 | 0 |
9 | 11 | 0 | 0 | 1 |
11 | 12 | 0 | 0 | 0 |
Excel result
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.562657013 | ||||
R Square | 0.316582915 | ||||
Adjusted R Square | 0.060301508 | ||||
Standard Error | 2.661453237 | ||||
Observations | 12 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 3 | 26.25 | 8.75 | 1.235294 | 0.358901 |
Residual | 8 | 56.66666667 | 7.083333333 | ||
Total | 11 | 82.91666667 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 8.667 | 1.536590743 | 5.640191903 | 0.000487 | 5.123282 |
Q1 | -3 | 2.173067468 | -1.38053698 | 0.204764 | -8.0111 |
Q2 | -4 | 2.173067468 | -1.840715973 | 0.102932 | -9.0111 |
Q3 | -2 | 2.173067468 | -0.920357987 | 0.384298 | -7.0111 |
y^= 8.667 - 3 Q1 -4 Q2 -2 Q3
c)
Year | Quarter | Ft |
4 | 1 | 5.667 |
4 | 2 | 4.667 |
4 | 3 | 6.667 |
4 | 4 | 8.667 |
d)
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.990659899 | ||||
R Square | 0.981407035 | ||||
Adjusted R Square | 0.970782484 | ||||
Standard Error | 0.469295318 | ||||
Observations | 12 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 4 | 81.375 | 20.34375 | 92.37162 | 3.89E-06 |
Residual | 7 | 1.541666667 | 0.220238095 | ||
Total | 11 | 82.91666667 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 3.417 | 0.428406053 | 7.975299706 | 9.3E-05 | 2.403647 |
t | 0.656 | 0.041480238 | 15.82078687 | 9.77E-07 | 0.558165 |
Q1 | -1.031 | 0.402878254 | -2.559706285 | 0.037568 | -1.98391 |
Q2 | -2.688 | 0.392055911 | -6.854889634 | 0.000241 | -3.61456 |
Q3 | -1.344 | 0.385416667 | -3.486486486 | 0.010177 | -2.25512 |
y^= 3.417 -1.013 Q1 -2.688 Q2 -1.344 Q3 + 0.656 t
e)
Year | Quarter | Period | Ft |
4 | 1 | 13 | 10.917 |
4 | 2 | 14 | 9.917 |
4 | 3 | 15 | 11.917 |
4 | 4 | 16 | 13.917 |