Question

In: Statistics and Probability

Use the following data to develop a multiple regression model to predict from and . Discuss...

Use the following data to develop a multiple regression model to predict from and . Discuss the output, including comments about the overall strength of the model, the significance of the regression coefficients, and other indicators of model fit. y x1 x2 198 29 1.64 214 71 2.81 211 54 2.22 219 73 2.70 184 67 1.57 167 32 1.63 201 47 1.99 204 43 2.14 190 60 2.04 222 32 2.93 197 34 2.15 Appendix A Statistical Tables *(Round your answer to two decimal places.) **(Round your answer to 4 decimal places.) ***(Round your answer to 3 decimal places.) The regression equation is: *+( **) +( ***) * with *** * with * * with ** *** *** Adjusted ***

Solutions

Expert Solution

Sol:

Install anaysis tool pack in excel and then

Go to data >dataanalysis>Regression

Select X

select Y

click ok

You will get below output:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.855239
R Square 0.731433
Adjusted R Square 0.664292
Standard Error 9.400891
Observations 11
ANOVA
df SS MS F Significance F
Regression 2 1925.532 962.7658 10.89388 0.005202
Residual 8 707.014 88.37674
Total 10 2632.545
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 137.268 14.77854 9.28833 1.47E-05 103.1886 171.3474
x1 0.002515 0.18628 0.0135 0.98956 -0.42705 0.432078
x2 29.2061 6.533584 4.47015 0.002083 14.13963 44.27257

The regression equation is

y^=137.27+0.0025x1+29.206x2

F=

10.89 with p=0.005

t x1=

0.01 with p=0.99

tx2 =

4.47 with p=0.0021

S=9.401

R2 =0.731

ad j R 2 =0.664

From F output

p<0.05 model is significant

for X1 p=0.99,p>0.05 X1 is not significant variable

for X2 p=0.002,p<0.05 X2 is significant variable.


Related Solutions

Use Excel to develop a multiple regression model to predict Cost of Materials by Number of...
Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, New Capital Expenditures, Value Added by Manufacture, and End-of-Year Inventories. Locate the observed value that is in Industrial Group 12 and has 7 employees. Based on the model and the multiple regression output, what is the corresponding residual of this observation? Write your answer as a number, round to 2 decimal places. SIC Code No. Emp. No. Prod. Wkrs. Value Added by Mfg....
Use the following data to develop a quadratic model to predict y from x. Develop a...
Use the following data to develop a quadratic model to predict y from x. Develop a simple regression model from the data and compare the results of the two models. Does the quadratic model seem to provide any better predictability? Why or why not? x y x y 15 229 15 247 9 74 8 82 6 29 5 21 21 456 10 94 17 320
14.1)use the following data to develop a quadratic model to predict y from x. develop a...
14.1)use the following data to develop a quadratic model to predict y from x. develop a simple regression model from the data and compare the results of the two models. Does the quadratic model seem to provide any better predictability? Why or why not ?       x       y         x       y 14 200 15 247 9 74 8 82 6 29 5 21 21 456 10 94 17 320 Answer:simple model: y^=   -14.27+27.128x, F=229.67 with p=.000, se=27.27, R2=.97,...
Data was collected from 40 employees to develop a regression model to predict the employee’s annual...
Data was collected from 40 employees to develop a regression model to predict the employee’s annual salary using their years with the company (Years), their starting salary in thousands (Starting), and their Gender (Male = 0, Female = 1). The level of significance is .01. The results from Excel regression analysis are shown below: SUMMARY OUTPUT Regression Statistics Multiple R 0.718714957 R Square 0.516551189 Adjusted R Square 0.476263788 Standard Error 10615.63461 Observations 40 ANOVA Df SS MS F Significance F...
1.Develop a multiple linear regression model to predict the price of a house using the square...
1.Develop a multiple linear regression model to predict the price of a house using the square feet of living area, number of bedrooms, and number of bathrooms as the predictor variables     Write the reqression equation.      Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence. Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 95% level of confidence....
Use Excel to develop a regression model for the Hospital Database to predict the number of...
Use Excel to develop a regression model for the Hospital Database to predict the number of Personnel by the number of Births. How many residuals are within 1 standard error? Write your answer as a whole number. Personnel Births 792 312 1762 1077 2310 1027 328 355 181 168 1077 3810 742 735 131 1 1594 1733 233 257 241 169 203 430 325 0 676 2049 347 211 79 16 505 2648 1543 2450 755 1465 959 0 325...
Use Excel to develop a regression model for the Hospital Database to predict the number of...
Use Excel to develop a regression model for the Hospital Database to predict the number of Personnel by the number of Births. How many residuals are within 1 standard error? Write your answer as a whole number. Personnel(y) Births(x) 792 312 1762 1077 2310 1027 328 355 181 168 1077 3810 742 735 131 1 1594 1733 233 257 241 169 203 430 325 0 676 2049 347 211 79 16 505 2648 1543 2450 755 1465 959 0 325...
Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data.
Quarter Year 1 Year 2 Year 3 1 3 6 8 2 2 4 8 3 4 7 9 4 6 9 11 (b) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your answers to three decimal places. For...
b) Use a multiple regression model with dummy variables as follows to develop an equation to...
b) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank (Example: -300). If the constant...
A multiple regression model is to be constructed to predict the final exam score of a...
A multiple regression model is to be constructed to predict the final exam score of a university student doing a particular course based upon their mid-term exam score, the average number of hours spent studying per week and the average number of hours spent watching television per week. Data has been collected on 30 randomly selected individuals: hide data Download the data Final score Mid-term Score Hours studying per week Hours watching TV per week 76 85 19 34 60...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT