Question

In: Advanced Math

y(4)+18y''+81y=0 y(0)=2,  y'(0)=8,  y''(0)=0,  y'''(0)=−108 Note; y(4) is the 4th derivative of y Solve the initial value problem y(t)=...

y(4)+18y''+81y=0

y(0)=2,  y'(0)=8,  y''(0)=0,  y'''(0)=−108

Note; y(4) is the 4th derivative of y

Solve the initial value problem y(t)= ?

Solutions

Expert Solution


Related Solutions

Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0)...
Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −10.
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0)...
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0) = 0, y'(0) = 0, y''(0) = 0.
Solve the initial value problem: 9y″+18y′+19y=0, y(π/2)=−2, y′(π/2)=−2. Give your answer as y=... . Use x...
Solve the initial value problem: 9y″+18y′+19y=0, y(π/2)=−2, y′(π/2)=−2. Give your answer as y=... . Use x as the independent variable.
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
1. solve the initial value problem. (t^(2)+1)y'+2ty=tant , y(0)=2 2.find the solution to this initial value...
1. solve the initial value problem. (t^(2)+1)y'+2ty=tant , y(0)=2 2.find the solution to this initial value problem. yy'=e^x+x , y(0)=y_0 y_0 is a nonzero constant.
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3...
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3 y' being the first derivative of y(x), y'' being the second derivative, etc.
Consider the initial value problem y′ = 18x − 3y, y(0) = 2 (a) Solve it...
Consider the initial value problem y′ = 18x − 3y, y(0) = 2 (a) Solve it as a linear 1st order ODE with the method of the integrating factor. (b) Solve it using a substitution method. (c) Solve it using the Laplace transform.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT