Question

In: Advanced Math

Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3...

Solve the initial value problem:

y'' + y = cos(x)

y(0) = 2

y'(0) = -3

y' being the first derivative of y(x), y'' being the second derivative, etc.

Solutions

Expert Solution


Related Solutions

Solve the following initial value problems y'' + y = 2/cos x , y(0) = y'(0)...
Solve the following initial value problems y'' + y = 2/cos x , y(0) = y'(0) = 2 x^3 y''' − 6xy' + 12y = 20x^4, x > 0, y(1) = 8/3 , y'(1) = 50/3 , y''(1) = 14 x^2 y'' − 2xy' + 2y = x^2, x > 0, y(1) = 3, y'(1) = 5
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem dy/dx = −(2x cos(x^2))y + 6(x^2)e^(− sin(x^2)) , y(0) = −5...
Solve the initial value problem dy/dx = −(2x cos(x^2))y + 6(x^2)e^(− sin(x^2)) , y(0) = −5 Solve the initial value problem dy/dt = (6t^5/(1 + t^6))y + 7(1 + t^6)^2 , y(1) = 8. Find the general solution of dy/dt = (2/t)*y + 3t^2* cos3t
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and...
Solve the following initial value: y ''+ 4y = 2 cos 2t, y(0) = −2 and y 0 (0) = 0
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it...
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it analytically. (b) Solve it using Euler’s method using step size h = 0.1 and find an approximation to true solution at x = 0.3. (c) What is the error in the Euler’s method at x = 0.3
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Solve the initial value problem. (x^2 * D^2 +xD - 4i) * y = x^3, y(1)...
Solve the initial value problem. (x^2 * D^2 +xD - 4i) * y = x^3, y(1) = -4/5, y'(1) = 93/5
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
Consider an initial value problem              ?′′ + 2? = ?(?) = cos? (0 ≤ ? <...
Consider an initial value problem              ?′′ + 2? = ?(?) = cos? (0 ≤ ? < ?) ,    0 (? ≥ ?) ?(0) = 0 and ?′(0) = 0 (a) Express ?(?) in terms of the unit step function. (b) Find the Laplace transform of ?(?). (c) Find ?(?) by using the Laplace transform method.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT