Question

In: Other

refrigarent-134a enters the expansion valve of a refrigeration system at 1MPa as a satuarted liquid and...

refrigarent-134a enters the expansion valve of a refrigeration system at 1MPa as a satuarted liquid and leaves at 100kPa. determine the temperature change across the valve

a.0
b.65.74C
c.640C
d.-26.37C

Solutions

Expert Solution


Related Solutions

Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and...
Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and a quality of 20% at a velocity of 6 m/s. At the exit, the refrigerant is a saturated vapor at -4oC. The evaporator flow channel has constant diameter of 1.7 cm. Determine the mass flow rate of the refrigerant, in kg/s, and the velocity at the exit, in m/s.
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and...
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and a quality of 20% at a velocity of 7 m/s. At the exit, the refrigerant is a saturated vapor at -12°C. The evaporator flow channel has constant diameter of 1.7cm. Determine the mass flow rate of the refrigerant in kg/s Determine the velocity at the exit in m/s
An expansion valve in a refrigeration cycle throttles R134a from 1.2MPa saturated liquid to 0.32MPa. What...
An expansion valve in a refrigeration cycle throttles R134a from 1.2MPa saturated liquid to 0.32MPa. What is the specific volume at the exit of the expansion valve in unit of m3/kg. Round the result to 4 decimal places.
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 °...
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 ° C temperature and exits at 1 MPa pressure. The volumetric flow of the refrigerant entering the compressor is 0.23 m3 / minute. The refrigerant enters the throttling valve at 0.95 MPa pressure and 30 ° C, exiting the evaporator as saturated steam at -18 ° C. The adiabatic efficiency of the compressor is 78%. Show the cycle in the T-s diagram. In addition, a)...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor as saturated vapor at 6 C and enters a throttling valve as a saturated liquid at 1.2MPa. Assuming the mass flow rate of fluid is 1 kg/sec. 1. The heat received by the fluid (kJ) is 2. The heat received by the surroundings (kJ) is 3. The power input to the compressor (kJ) is 4. The coefficient of performance is
Saturated liquid Propane flows in to a valve. It enters at 375 psia, and leaves at 15 psia.
  Saturated liquid Propane flows in to a valve. It enters at 375 psia, and leaves at 15 psia. Mass flow through the valve is 1.25 lbm/hr. Use EES and ‘Propane’ as your fluid.  This new device replaces the valve with a ‘magic’ isentropic device. Assuming the device operates at steady state, and PE and KE terms are insignificant, calculate how much power could be generated by the device (hp)?
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enter
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enters   the   compressor   as   a   saturated   vapour   at   200   kPa,   and   exits   the   condenser   as   a   saturated   liquid   at   900   kPa.   The   rate   of   refrigeration   of   the   cycle   is   to   be   6.0   tons   of   refrigeration   (1   ton   of   refrigeration   =   3.517   kW).   The   compressor   isentropic   efficiency   is   80%.   Determine:   a) The   temperature   of   evaporation   and   condensation   of   the   refrigerant;   b) Mass   flow   of   the   refrigerant   R-134a,   in  ...
A refrigeration system contains an adiabatic compressor with Refrigerant-134a as working fluid. Inlet conditions (state 1)...
A refrigeration system contains an adiabatic compressor with Refrigerant-134a as working fluid. Inlet conditions (state 1) are 140 kPa and -100C and the exit state is 1.6 MPa and 800C (state 2). The changes in KE and PE are negligible. Determine (a) actual exit specific enthalpy in kJ/kg, (b) exit specific isentropic entropy in kJ/lg.K and (c) efficiency of the compressor in %.
A well-insulated expansion/throttle valve is designed to operate with refrigerant R134a. It receives a liquid-gas mixture...
A well-insulated expansion/throttle valve is designed to operate with refrigerant R134a. It receives a liquid-gas mixture with a quality of 0.1 and a pressure of 400 kPa. The refrigerant leaves with a pressure of 100 kPa. Find the temperature (in Celsius) and the specific volume (m3/kg) at the exit of the valve.
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters...
The capacity of a propane vapor-compression refrigeration system is 8 tons. Saturated vapor at 0°F enters the compressor, and superheated vapor leaves at 120°F, 180 lbf/in.2 Heat transfer from the compressor to its surroundings occurs at a rate of 3.5 Btu per lb of refrigerant passing through the compressor. Liquid refrigerant enters the expansion valve at 85°F, 180 lbf/in.2 The condenser is water-cooled, with water entering at 65°F and leaving at 80°F with a negligible change in pressure. Determine (a)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT