Question

In: Math

Let {an} be a sequence defined recursively by a1 = 1 and an+1 = 2√ 1...

Let {an} be a sequence defined recursively by a1 = 1 and an+1 = 2√ 1 + an where n ∈ N

(b) Does {an} converge or diverge? Justify your answer, making sure to cite appropriate hypotheses/theorem(s) used. Hint : Try BMCT [WHY?].

(c) (Challenge) If {an} converges then find its limit. Make sure to fully justify your answer.

Solutions

Expert Solution


Related Solutions

Write the first four terms of the sequence defined by the recursive formula a1 = 2, an = an − 1 + n.
Write the first four terms of the sequence defined by the recursive formula a1 = 2, an = an − 1 + n.
Let a1 ≥ a2, . . . , an be a sequence of positive integers whose...
Let a1 ≥ a2, . . . , an be a sequence of positive integers whose sum is 2n − 2. Prove that there exists a tree T on n vertices whose vertices have degrees a1, a2, . . . , an. Sketch of solution: Prove that there exist i and j such that ai = 1 and aj ≥ 2. Remove ai, subtract 1 from aj and induct on n.
Define a sequence from R as follows. Fix r > 1. Let a1 = 1 and...
Define a sequence from R as follows. Fix r > 1. Let a1 = 1 and define recursively, an+1 = (1/r) (an + r + 1). Show, by induction, that (an) is increasing and bounded above by (r+1)/(r−1) . Does the sequence converge?
A set M of numbers is defined recursively by 1. 2 and 3 belong to M...
A set M of numbers is defined recursively by 1. 2 and 3 belong to M 2. If x and y belong to M, so does x * y Which of the following numbers belong to M? 6, 9, 16, 21, 26, 54, 72, 218
Let the Fibonacci sequence be defined by F0 = 0, F1 = 1 and Fn =...
Let the Fibonacci sequence be defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Use induciton to prove that F0F1 + F1F2 + · · · + F2n−1 F2n = F^2 2n for all positive integer n.
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum...
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum of all integers = 2(n-1) Write an algorithm that, starting with a sequence (a1,a2,a3,...an) of positive integers, either constructs a tree with this degree sequence or concludes that none is possible.
Alternating Series Test. Let (an) be a sequence satisfying (i) a1 ≥ a2 ≥ a3 ≥...
Alternating Series Test. Let (an) be a sequence satisfying (i) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · and (ii) (an) → 0. Show that then the alternating series X∞ n=1 (−1)n+1an converges using the following two different approaches. (a) Show that the sequence (sn) of partial sums, sn = a1 − a2 + a3 − · · · ± an is a Cauchy sequence Alternating Series Test. Let (an) be...
The Lucas numbers are very similar to the Fibonacci numbers and are defined by a1=2, a2=1,...
The Lucas numbers are very similar to the Fibonacci numbers and are defined by a1=2, a2=1, and an+2=an+1+an. So the first five are 2, 1, 3, 4, 7 and it continues in that fashion. Give the next 4 Lucas numbers
2. Let {Zt , t = 0, ±1, ±2, ...} be a sequence of independent random...
2. Let {Zt , t = 0, ±1, ±2, ...} be a sequence of independent random variables, each with mean EZt = 0 and variance Var(Zt) = σ 2 . Define Xt = ZtZt−1 + Zt−2. • Compute the mean and the covariance function for Xt . • Is {Xt} weakly stationary? Explain why.
1.Prove the following statements: . (a) If bn is recursively defined by bn =bn−1+3 for all...
1.Prove the following statements: . (a) If bn is recursively defined by bn =bn−1+3 for all integers n≥1 and b0 =2, then bn =3n+2 for all n≥0. .(b) If cn is recursively defined by cn =3cn−1+1 for all integers n≥1 and c0 =0, then cn =(3n −1)/2 for all n≥0. .(c) If dn is recursively defined by d0 = 1, d1 = 4 and dn = 4dn−1 −4dn−2 for all integers n ≥ 2, then dn =(n+1)2n for all n≥0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT