Question

In: Statistics and Probability

The Lucas numbers are very similar to the Fibonacci numbers and are defined by a1=2, a2=1,...

The Lucas numbers are very similar to the Fibonacci numbers and are defined by a1=2, a2=1, and an+2=an+1+an. So the first five are 2, 1, 3, 4, 7 and it continues in that fashion.

Give the next 4 Lucas numbers

Solutions

Expert Solution

a6 = 7 + 4 = 11

a7 = 11 + 7 = 18

a8 = 18 + 11 = 29

a9 = 29 + 18 = 47

                                                                                                                                                                                             


Related Solutions

The Lucas Numbers are a sequence very similar to the Fibonacci Sequence, the only difference being...
The Lucas Numbers are a sequence very similar to the Fibonacci Sequence, the only difference being that the Lucas Numbers start with L0 = 2 and L1 = 1 as opposed to Fibonacci’s F0 = 0 and F1 = 1. Concretely, they are defined by L0 = 2, L1 = 1, and Ln := Ln−1 + Ln−2 for n > 1. Write a function in C++ that takes an integer argument N and returns the sum of the first N...
Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 +...
Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ∈ N ∪ {0}. (1) Make and prove an (if and only if) conjecture about which Fibonacci numbers are multiples of 3. (2) Make a conjecture about which Fibonacci numbers are multiples of 2020. (You do not need to prove your conjecture.) How many base cases would a proof by induction of your conjecture require?
0.3 The Fibonacci numbers Fn are defined by F1 = 1, F2 = 1 and for...
0.3 The Fibonacci numbers Fn are defined by F1 = 1, F2 = 1 and for n >2, Fn = F sub (n-1) + F sub (n-2). Find a formula for Fn by solving the difference equation.
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following...
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following codes running: ori $a0, $0, 11 ori $a1, $0, 19 addi $a1, $a1, -7 slt $t2, $a1, $a0 beq $t2, $0, label addi $a2, $a1, 0 sub $a3, $a1,$a0 j end_1 label: ori $a2, $a0, 0 add $a3, $a1, $a0 end_1: xor $t2, $a1, $a0 *Values in $a0, $a1, $a2, $a3 after the above instructions are executed.
Let {an} be a sequence defined recursively by a1 = 1 and an+1 = 2√ 1...
Let {an} be a sequence defined recursively by a1 = 1 and an+1 = 2√ 1 + an where n ∈ N (b) Does {an} converge or diverge? Justify your answer, making sure to cite appropriate hypotheses/theorem(s) used. Hint : Try BMCT [WHY?]. (c) (Challenge) If {an} converges then find its limit. Make sure to fully justify your answer.
Present an O(n) algorithm that sorts n positive integer numbers a1, a2, . . . ,...
Present an O(n) algorithm that sorts n positive integer numbers a1, a2, . . . , an which are known to be bounded by n 2 (so ai ≤ n 2 , for every i = 1, . . . , n. Use the idea of Radix Sort (discussed in class and presented in Section 8.3 in the textbook). Illustrate your algorithm by showing on paper similar to Fig. 8.3, page 198 in the textbook (make sure you indicate clearly...
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1...
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1 + a2 = b1 + b2 mod n, (2) a1 − a2 = b1 − b2 mod n, and (3) a1a2 = b1b2 mod n.
2. The Fibonacci sequence is defined as f(n) = f(n - 1) + f(n - 2)...
2. The Fibonacci sequence is defined as f(n) = f(n - 1) + f(n - 2) with f(0) = 0 and f(1) = 1. Find f(54) by a program or maually. Note that this number must be positive and f(53) = 53.......73 (starting with 53 and ending with 73). I must admit that my three machines including a desktop are unable to find f(54) and they quit during computation. The answer is f(54) = 86267571272 */ The Java code: public...
We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for...
We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for every strictly positive number ε, there is a natural number n such that all the elements an,an+1,an+2,… are within distance ε of the value L. In this case, we write lim a = L. Express the condition that lim a = L as a formula of predicate logic. Your formula may use typical mathematical functions like + and absolute value and mathematical relations like...
The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8,.... Formally,...
The Fibonacci sequence is the series of numbers 0, 1, 1, 2, 3, 5, 8,.... Formally, it can be expressed as: fib0 = 0 fib1 = 1 fibn = fibn-1 + fibn-2 Write a multithreaded C++ program that generates the Fibonacci series using the pthread library. This program should work as follows: The user will enter on the command line the number of Fibonacci numbers that the program will generate. The program will then create a separate thread that will...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT