Question

In: Physics

A car of mass 1110 kg enters a banked turn with a banking angle of 11.1°...

A car of mass 1110 kg enters a banked turn with a banking angle of 11.1° and a radius of 300 m at a speed of 30.0 m/s. The coefficient of static friction between the car’s wheels and the pavement is 0.0881. The turn covers a total of 1 45°.

(a) If the car experiences a drag force that of D=kv where k=32.0kg/s, how much thrust must the car provide to maintain constant velocity in the turn?

(b) If the engine of the car suddenly cuts out at 2.10 s after entering the curve, and the only tangential force acting on the car is the drag force, how fast will the car be traveling by the time it exits the curve?

(c) Will the car begin to slip before it exits the curve in this case above where the engine fails after 2.10 s?

Solutions

Expert Solution


Related Solutions

A 2500 kg car encounters a banked, horizontal curve of diameter 240 m. The banking angle...
A 2500 kg car encounters a banked, horizontal curve of diameter 240 m. The banking angle is 7.5 degrees, and the coefficient of friction between the tires and the road is 0.80. (a) What is the maximum safe speed of the car? (b) What is the net force on the car in this case?
1) a car of mass 999 kg traveling at 72.0 km/hour enters a flat(non-banked) and dry...
1) a car of mass 999 kg traveling at 72.0 km/hour enters a flat(non-banked) and dry curve of radius 97.4 m. What is the coefficient of static friction between the tires and the road required to prevent the car from slipping ? 2) Shirin pushes a 27.1 kg crate a distance of 8.65 m along a level floor at constant velocity by pushing downward at an angle of 32.0 below the horizontal. The coefficient of kinetic friction between the crate...
A curve of radius 30 m is banked so that a 950 kg car travelling at...
A curve of radius 30 m is banked so that a 950 kg car travelling at 40 km/h can go round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction is 0.3, what is...
A car moving at 37 km/h negotiates a 150 m -radius banked turn designed for 60...
A car moving at 37 km/h negotiates a 150 m -radius banked turn designed for 60 km/h. What coefficient of friction is needed to keep the car on the road?
4. A car of mass m is traveling with constant speed v around a circular banked...
4. A car of mass m is traveling with constant speed v around a circular banked road of radius R, see the side view and the free-body diagram. a) Apply Newton’s 2nd law to the car, i.e. write equations for the centripetal, angular, and vertical components of the net force. b) Determine the angle θ at which the road should be banked so that no static friction is required to drive the car. Now, include the static friction force FS...
A car of mass 2400 kg collides with a truck of mass 4500 kg, and just...
A car of mass 2400 kg collides with a truck of mass 4500 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <35, 0, 0> m/s, and the truck's velocity just before the collision was <-10, 0, 21> m/s. What is the increase in internal energy of the car and truck (thermal energy and deformation)?
The 80-kg box is connected to a car with an angle of 65 degrees with the...
The 80-kg box is connected to a car with an angle of 65 degrees with the ground. The box at rest is then pulled by the car for 10m. When the box is traveling at 4 m/s, the cable breaks. The box slides for 1.5 seconds and it comes to a full stop. What is the average tension in the the cable? What is the coefficient of friction?
A block with mass m1 = 8.5 kg is on an incline with an angle θ...
A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? ) Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT