Question

In: Physics

A car of mass 2400 kg collides with a truck of mass 4500 kg, and just...

A car of mass 2400 kg collides with a truck of mass 4500 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <35, 0, 0> m/s, and the truck's velocity just before the collision was <-10, 0, 21> m/s. What is the increase in internal energy of the car and truck (thermal energy and deformation)?

Solutions

Expert Solution

Solution:

Given,

mass of the car

mass of the truck

initial velocity of car

initial velocity of truck

After the collision, the car and truck travel together with a velocity .

By conservation of momentum,

Total momentum before collision= Total momentum after collision.

Thus,

Total kinetic energy before collision is given by,

Total kinetic energy after collision is given by,

The difference in energy is given by,

  

The increase in internal energy of the car and truçk is .


Related Solutions

A car collides with a truck. The force exerted by the truck on the car is...
A car collides with a truck. The force exerted by the truck on the car is A) less than the force exerted by the car on the truck B) greater than the force exerted by the car on the truck C) the same as the force exerted by the car on the truck D) not necessarily related to the force exerted by the car on the truck.
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck...
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck that is traveling north. The two vehicles stick together as a result of the collision. After the collision, the wreckage is sliding at vf = 19 m/s in the direction θ = 25° east of north. Calculate the speed of each vehicle before the collision. The collision occurs during a heavy rainstorm so you can ignore friction forces between the vehicles and the wet...
A 1200-kg car moving at  25 m/s suddenly collides with a stationary car of mass 1,002  If the...
A 1200-kg car moving at  25 m/s suddenly collides with a stationary car of mass 1,002  If the two vehicles lock together, what energy was lost to heat?
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest...
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 25.0 km/h in a direction of 25 o with respect to the positive x axis. The heavier car moves at 28 km/h at -50 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? Also, What was the initial...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.31 m/s. How much kinetic energy is lost in the collision? Answer in units of J.
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two...
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.00 m/s. a) What is the speed of the three coupled cars after the collision? b) How much kinetic energy is lost in the collision?
A railroad car of mass 2.20 ✕ 104 kg moving at 5.00 m/s collides and couples...
A railroad car of mass 2.20 ✕ 104 kg moving at 5.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision?   _________________m/s (b) How much kinetic energy is lost in the collision?   ________________J
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
A railroad car of mass 3.10 ✕ 10^4 kg moving at 3.50 m/s collides and couples...
A railroad car of mass 3.10 ✕ 10^4 kg moving at 3.50 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? __m/s (b) How much kinetic energy is lost in the collision? __J
A large SUV has a mass of 2400 kg . Calculate the mass of CO2 emitted...
A large SUV has a mass of 2400 kg . Calculate the mass of CO2 emitted into the atmosphere upon accelerating the SUV from 0.0 to 65.0 mph . Assume that the required energy comes from the combustion of octane (ΔH∘f=−250.1 kJ) with 30% efficiency. (Hint: Use KE=12mv2 to calculate the kinetic energy required for the acceleration.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT