Question

In: Physics

A curve of radius 30 m is banked so that a 950 kg car travelling at...

A curve of radius 30 m is banked so that a 950 kg car travelling at
40 km/h can go round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction is 0.3, what is the range of speeds you tell them?

Solutions

Expert Solution


Related Solutions

A 950 kg car turns around a curve of a radius 30 m on a level...
A 950 kg car turns around a curve of a radius 30 m on a level road. If the coefficient of static friction between the tires and the road is 0.55, how fast can the car go around the curve without sliding?
A highway curve with a radius of 450 m is banked properly for a car traveling...
A highway curve with a radius of 450 m is banked properly for a car traveling 80 km/h. If a 1560- kg Porshe 928S rounds the curve at 250 km/h, how much sideways force must the tires exert against the road if the car does not skid?
A highway curve with a radius of 750 m is banked properly for a car traveling...
A highway curve with a radius of 750 m is banked properly for a car traveling 120 km/h. If a 1600- kg Porshe 928S rounds the curve at 230 km/h, how much sideways force must the tires exert against the road if the car does not skid?
A 2500 kg car encounters a banked, horizontal curve of diameter 240 m. The banking angle...
A 2500 kg car encounters a banked, horizontal curve of diameter 240 m. The banking angle is 7.5 degrees, and the coefficient of friction between the tires and the road is 0.80. (a) What is the maximum safe speed of the car? (b) What is the net force on the car in this case?
1) A concrete highway curve of radius 70 m and is banked at an angle of...
1) A concrete highway curve of radius 70 m and is banked at an angle of 30o. Imagine a car driving around the turn at a constant height. We want to find the maximum speed at which a 1100 kg rubber-tired car can go around this curve. Take the static coefficient of friction of rubber on concrete to be ?s = 1.0. a) Calculate the maximum speed the car can go around the curve. b) Discuss what is different from...
A curve of radius 90 m is banked for a design speed of 100 km/h. If...
A curve of radius 90 m is banked for a design speed of 100 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve?
A curve of radius 69 m is banked for a design speed of 78 km/h. If...
A curve of radius 69 m is banked for a design speed of 78 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.]
A curve of radius 69 m is banked for a design speed of 80 km/h ....
A curve of radius 69 m is banked for a design speed of 80 km/h . if the coefficient of static friction is 0.33 (wet pavement) at what range of speeds can a car safely make the curve?
A curve of radius 40 m is banked for a design speed of 60 km/h. If...
A curve of radius 40 m is banked for a design speed of 60 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? minimum maximum
A curve of radius 70 m is banked for a design speed of 100 km/h ....
A curve of radius 70 m is banked for a design speed of 100 km/h . If the coefficient of static friction is 0.33 (wet pavement), at what range of speeds can a car safely make the curve?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT