Question

In: Physics

A block with mass m1 = 8.5 kg is on an incline with an angle θ...

A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block.

1)

When there is no friction, what is the magnitude of the acceleration of the block?

)

Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the block?

To keep the mass from accelerating, a spring is attached with spring constant k = 146 N/m. What is the coefficient of static friction if the spring must extend at least x = 17 cm from its unstretched length to keep the block from moving down the plane?

The spring is replaced with a massless rope that pulls horizontally to prevent the block from moving. What is the tension in the rope?

Now a new block is attached to the first block. The new block is made of a different material and has a coefficient of static friction μ = 0.83. What minimum mass is needed to keep the system from accelerating?

Solutions

Expert Solution

The mass 10.49 kg is to be placed infront of the 8.5 kg mass to stop it sliding.


Related Solutions

A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block with mass m1 = 9.4 kg is on an incline with an angle θ...
A block with mass m1 = 9.4 kg is on an incline with an angle θ = 34° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 2) Now with friction, the acceleration is measured to be only a = 3.73 m/s2. What is the coefficient of kinetic friction between the incline and...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.54 kg on a frictionless plane inclined at angle θ = 26.5° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.41 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.24 for both blocks. Determine the acceleration of the blocks.
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4...
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 3 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.44 for both blocks. Determine the acceleration of the blocks.
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected...
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected by a massless string over a pulley in the shape of asolid disk having radius R = 0.250 m and mass M =10.0 kg. These blocks are allowed to move on a fixed block-wedge ofangle ? = 30.0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT