Question

In: Math

3.3 3.0 2.3 2.6 2.5 2.8 2.7 2.9 2.4 2.4 2.0 3.6 3.1 3.9 2.6 4.0...

3.3 3.0 2.3 2.6 2.5 2.8 2.7 2.9 2.4 2.4 2.0 3.6 3.1 3.9 2.6 4.0 1.7 3.0 3.1 2.0 1.9 2.1 1.9 2.1 3.4 Calculate the coefficient of variation.

Solutions

Expert Solution

Mean(µ) = (3.3 + 3.0 + 2.3 + 2.6 + 2.5 + 2.8 + 2.7 + 2.9 + 2.4 + 2.4 + 2.0 + 3.6 + 3.1 + 3.9 + 2.6 + 4.0 + 1.7 + 3.0 + 3.1 + 2.0 + 1.9 + 2.1 + 1.9 + 2.1 + 3.4)/25
Mean = 67.3/25
µ = 2.6919

µ = 2.6919


= √( (1/25-1) * (3.3-2.6919)2+( 3.0-2.6919)2+( 2.3-2.6919)2+( 2.6-2.6919)2+( 2.5-2.6919)2+( 2.8-2.6919)2+( 2.7-2.6919)2+( 2.9-2.6919)2+( 2.4-2.6919)2+( 2.4-2.6919)2+( 2.0-2.6919)2+( 3.6-2.6919)2+( 3.1-2.6919)2+( 3.9-2.6919)2+( 2.6-2.6919)2+( 4.0-2.6919)2+( 1.7-2.6919)2+( 3.0-2.6919)2+( 3.1-2.6919)2+( 2.0-2.6919)2+( 1.9-2.6919)2+( 2.1-2.6919)2+( 1.9-2.6919)2+( 2.1-2.6919)2+( 3.4-2.6919)2)
= √( (1/24) * (0.60812 + 0.30812 + -0.39192+ -0.09192 + -0.19192 + 0.10812 + 0.00812+ 0.20812 + -0.29192 + -0.29192 + -0.69192+ 0.90812 + 0.40812 + 1.20812 + -0.09192 + 1.30812 + -0.99192 + 0.30812 + 0.40812 + -0.69192 + -0.79192 + -0.59192 + -0.79192 + -0.59192 + 0.70812))
= √( (1/24) * (0.36978561 + 0.09492561 + 0.15358561 + 0.00844561 + 0.03682561 + 0.01168561 + 6.561E-5 + 0.04330561 + 0.08520561 + 0.08520561 + 0.47872561 + 0.82464561 + 0.16654561 + 1.45950561 + 0.00844561 + 1.71112561 + 0.98386561 + 0.09492561 + 0.16654561 + 0.47872561 + 0.62710561 + 0.35034561 + 0.62710561 + 0.35034561 + 0.50140561))
= √ 0.40487769
σ= 0.6363

Coefficient of Variance = σ/µ
= 0.6363 / 2.6919
Coefficient of Variance = 0.2363


Related Solutions

0.1 0.4 3.1 1.9 2.0 5.1 1.3 3.6 3.6 2.7 1.9 7.5 3.8 2.3 9.2 3.0...
0.1 0.4 3.1 1.9 2.0 5.1 1.3 3.6 3.6 2.7 1.9 7.5 3.8 2.3 9.2 3.0 3.3 1.8 4.9 6.0 4.1 1.8 5.7 6.7 2.4 3.3 8.6 What is the margin of error for the population mean at 90% confidence level for the above information?
of a concrete slab (ksi): 2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9,...
of a concrete slab (ksi): 2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9, and 2.1. (a) Compute the mean and standard deviation of the above data set (b) Compute the 25th, 50th, 75th and 90th percentile values of the compressive strength from the above dataset (c) Construct a boxplot for the above data set (d) Check if the largest value is an outlier following the z-score approach)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT