Question

In: Statistics and Probability

of a concrete slab (ksi): 2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9,...

of a concrete slab (ksi): 2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9, and 2.1.

(a) Compute the mean and standard deviation of the above data set

(b) Compute the 25th, 50th, 75th and 90th percentile values of the compressive strength from the above dataset

(c) Construct a boxplot for the above data set

(d) Check if the largest value is an outlier following the z-score approach)

Solutions

Expert Solution

(a) Compute the mean and standard deviation of the above data set

mean=sum/total

=35.6/12

=2.967

mean=2.967

concrete slab(x) mean(xbar) x-xbar (x-xbar)^2
2.5 2.966667 -0.46667 0.217778
3.5 2.966667 0.533333 0.284444
2.2 2.966667 -0.76667 0.587778
3.2 2.966667 0.233333 0.054444
2.9 2.966667 -0.06667 0.004444
4.3 2.966667 1.333333 1.777777
3.7 2.966667 0.733333 0.537777
3.4 2.966667 0.433333 0.187777
3.1 2.966667 0.133333 0.017778
2.8 2.966667 -0.16667 0.027778
1.9 2.966667 -1.06667 1.137778
2.1 2.966667 -0.86667 0.751112
total 5.586667
standard deviation=sqrt(5.586667/12-1)
standard deviation=sqrt(0.507879)
=0.712656

standard deviation=0.712656

Solutionb:

Code in R:

ksac <- c(2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9, 2.1)
quantile(ksac,0.25)
quantile(ksac,0.50)
quantile(ksac,0.75)
quantile(ksac,0.90)

25 th percentile=2.425

50 th percentile=3

75 th percentile=3.425

90 th percentile=3.68

Solutionc:

there are no outliers seen from boxplot

Rcode t get boxplot is

outlier_values <- boxplot.stats(ksac$out) # outlier values.
boxplot(ksac, main="concrete strength ", boxwex=0.1)
mtext(paste("Outliers: ", paste(outlier_values, collapse=", "), cex=0.6)

Solutiond:

max=4.3

zscore=x-mean/sd

=4.3-2.966667/0.7126561

z=1.870935

Z values above 1.96 is an outler.here we got z=1.87

4.3 is not an outlier


Related Solutions

Consider the following hypothetical dataset regarding the compression strength of a concrete slab (ksi): 2.5, 3.5,...
Consider the following hypothetical dataset regarding the compression strength of a concrete slab (ksi): 2.5, 3.5, 2.2, 3.2, 2.9, 4.3, 3.7, 3.4, 3.1, 2.8, 1.9, and 2.1. (a) Compute the mean and standard deviation of the above data set (b) Compute the 25th, 50th, 75th and 90th percentile values of the compressive strength from the above dataset (c) Construct a boxplot for the above data set (d) Check if the largest value is an outlier following the z-score approach
Question 3 Define the following terms: 3.1 WIKI 3.2 TRANSITIONS 3.3 AIDA 3.4 NETWORKING 3.5 PROOFREADING
Question 3 Define the following terms: 3.1 WIKI 3.2 TRANSITIONS 3.3 AIDA 3.4 NETWORKING 3.5 PROOFREADING
3.3 3.0 2.3 2.6 2.5 2.8 2.7 2.9 2.4 2.4 2.0 3.6 3.1 3.9 2.6 4.0...
3.3 3.0 2.3 2.6 2.5 2.8 2.7 2.9 2.4 2.4 2.0 3.6 3.1 3.9 2.6 4.0 1.7 3.0 3.1 2.0 1.9 2.1 1.9 2.1 3.4 Calculate the coefficient of variation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT