Question

In: Physics

Consider a solid sphere of mass m and radius r being released down a ramp from...

Consider a solid sphere of mass m and radius r being released down a ramp from a height h (i.e., its center of mass is initially a height h above the ground). It rolls without slipping and passes through a vertical loop of radius R.

a. Determine the moment of inertia of the solid sphere. You must carry out the integration and it’s not sufficient just to write out 2/5mr^2

b. Use energy conservation to show that the tangential and angular velocities of the sphere when it reaches the top of the loop is v=sqrt[((10g)/7)*(h-2R+r)], ?=sqrt[((10g)/(7r^2))*(h-2R+r)]

c. Draw a force diagram for the sphere at the top of the loop and write down Newton ?s second law in the radial direction.

d. Show that the minimum height from which the sphere must be released so that it doesn’t fall off the track atthe top of the loop is 2.7R-1.7r.

e. Neglecting its moment of inertia, would the minimum height be more or less than the one you calculated? Explain

Solutions

Expert Solution

3rd part answer is unclear. its N=mgcos(teta)


Related Solutions

A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R....
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track (between the ramp and the loop) with length 2R that has a kinetic friction coefficient of 0.5. From what height h must the mass be released to stay on the track? No figure. 1.5R 2.5R 3.5R 4.5R or 5.5R
A uniform solid ball of m=4.0 kg and radius r rolls smoothly down a ramp. The...
A uniform solid ball of m=4.0 kg and radius r rolls smoothly down a ramp. The ball starts from rest. The ball descends a vertical height of 6.0 m to reach the bottom of the ramp. What is its speed at the bottom?
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp of length 4.70 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s (b) Find the angular speed of the disk at the bottom of the ramp. rad/s
A solid, uniform disk of radius 0.250 m and mass 60.6 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 60.6 kg rolls down a ramp of length 4.80 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s (b) Find the angular speed of the disk at the bottom of the ramp. rad/s
A solid sphere of radius R is found at the origin. Point mass particles m have...
A solid sphere of radius R is found at the origin. Point mass particles m have elastic collisions with the sphere. Find a relationship between the (scattering) angle and the impact parameter to calculate the differential (cross-section) and the total differential.
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A hollow sphere of mass M and radius R is hit by a pendulum of mass...
A hollow sphere of mass M and radius R is hit by a pendulum of mass m and length L that is raised at an angle θ. After the collision the pendulum comes to a stop and the sphere rolls forward into a spring with stiffness k on an incline of ϕ. Find an expression for how far ∆x the spring compresses along the incline. Use only m, L, M, R, θ, ϕ, k and appropriate constants.
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero...
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero surface pressure. Derive expressions for the pressure P(r) and the gravitational potential phi(r) in terms of r, M, R, G and constants.
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
A hollow ball and a solid sphere are released from rest and roll down an inclined...
A hollow ball and a solid sphere are released from rest and roll down an inclined plane. Both have a mass of 1 kg, a radius of 5 cm, and experience a torque of 0.01 N m. Assume both balls roll without slipping. What is the difference in their linear velocities after the balls have both lost 4 m of elevation? I’d like you to use energy to solve this problem.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT