Question

In: Physics

A solid sphere of radius R is found at the origin. Point mass particles m have...

A solid sphere of radius R is found at the origin. Point mass particles m have elastic collisions with the sphere.
Find a relationship between the (scattering) angle and the impact parameter to calculate the differential (cross-section) and the total differential.

Solutions

Expert Solution

The point mass particles m have elastic collisions with the sphere as given can be represented as shown in fig.1 below. R is the radius of the solid sphere.

Now using geometrical interpretation   and
here   is the scattering angle.

Therefore b can be written as



This above equation is basically needed to calculate the scattering angle based on the impact parameter in 2-Dimension.




But for 3-Dimension is replaced by and measurement will be done in steradiun unit.
the basic calculation in between 2D angle (degree) and the 3D solid angle (steradiun) are:


where s is the curvature of the circumference of the circle and r is the radius of that circle.


on the other hand,


where A is the surface area of the sphere and r is the radius of the sphere.


Now as we know that

  
is the small volume in the spherical coordinate system

and


Therefore





The total cross sectional area can be found by integrating a differentiatd small area over all the solid angle for 3D as given below


if we change the impact parameter slightly it will be like


Using Taylor's series approximation the above equation can be written as




Therefore,




Now the differentiated cross section is shown in fig.2

Now, as

Integrating this equation for all ()


In this method neglecting the -ve sign the magnitude of the integration is nothing but the total cross section area.



The total cross sectional area can be found also by integrating over the complete solid angle as given below:



Here is the differential scattering cross section.

Ongoing further calculation the total scattering cross section will be as calculated before.


Related Solutions

A solid sphere of charge is centered at the origin and has radius R = 10...
A solid sphere of charge is centered at the origin and has radius R = 10 cm. Instead of being uniformly charged, the charge density varies with radial position: ρ(r)=ρ0ar. Take a=5.1 m and ρ0=3.7 C/m3. What is the total charge of the sphere? What is the electric flux through a sherical surface of radius R/2 that is concentric with the charged sphere? What is the flux through a spherical surface of radius 2R that surrounds the charged sphere, but...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform charge density ρ0, and the “southern” hemisphere a uniform charge density −ρ0. Find the approximate field E(r,θ) for points far from the sphere (r ≫ R). P.S. Please be as neat as possible.
Consider a solid sphere of mass m and radius r being released down a ramp from...
Consider a solid sphere of mass m and radius r being released down a ramp from a height h (i.e., its center of mass is initially a height h above the ground). It rolls without slipping and passes through a vertical loop of radius R. a. Determine the moment of inertia of the solid sphere. You must carry out the integration and it’s not sufficient just to write out 2/5mr^2 b. Use energy conservation to show that the tangential and...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A hollow sphere of mass M and radius R is hit by a pendulum of mass...
A hollow sphere of mass M and radius R is hit by a pendulum of mass m and length L that is raised at an angle θ. After the collision the pendulum comes to a stop and the sphere rolls forward into a spring with stiffness k on an incline of ϕ. Find an expression for how far ∆x the spring compresses along the incline. Use only m, L, M, R, θ, ϕ, k and appropriate constants.
A solid is bounded by the sphere centered at the origin of radius 5 and the...
A solid is bounded by the sphere centered at the origin of radius 5 and the infinite cylinder along the z-axis of radius 3. (a) Write inequalities that describe the solid in Cartesian coordinates. (b) Write inequalities that describe the solid in cylindrical coordinates. (c) Why is this solid difficult to describe in spherical coordinates? Which of the variables ρ, θ, φ are difficult to describe? Explain.
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
A solid homogeneous cylinder and a solid homogeneous sphere each have the same mass and radius....
A solid homogeneous cylinder and a solid homogeneous sphere each have the same mass and radius. They both roll without slipping, have the same linear speed and approach the same inclined plane.  As they roll up the inclined plane, they continue to roll without slipping. Which object will reach the greatest height on the inclined plane? A: solid homogeneous cylinder B: solid homogeneous sphere C: they both reach the same maximum height If you could explain why in your answer...
A sphere of mass M, radius r, and moment of inertial I = Mr2 (where is...
A sphere of mass M, radius r, and moment of inertial I = Mr2 (where is a dimensionless constant which depends on how the mass is distributed in the sphere) is placed on a track at a height h above the lowest point on the track. The sphere is released, and rolls without slipping. It reaches a horizontal surface which subsequently bends into a vertical loop-the-loop of radius R, as in Fig. 2 below. a) When it reaches the top...
An insulating sphere of mass M and radius R is wrapped with N coils of wire...
An insulating sphere of mass M and radius R is wrapped with N coils of wire around its equator. The sphere is placed on an incline at an angle θ in a uniform magnetic field of strength B. The goal is to keep the sphere from rolling down the incline by having a current in the coils. [Recall, the force of static friction at the point of contact creates a torque about the center of the sphere, which is what...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT