Question

In: Electrical Engineering

Frequency Divider: Use a count-for-50M counter and some glue logics to construct a 1 Hz clock...

Frequency Divider: Use a count-for-50M counter and some glue logics to construct a 1 Hz clock frequency. Construct a frequency divider of this kind. 2.1 Write the specification of the frequency divider. 2.2 Draw the block diagram of the frequency divider.

Solutions

Expert Solution


Related Solutions

1. Design a clock generator using a 555 timer with a frequency of 1 Hz (any...
1. Design a clock generator using a 555 timer with a frequency of 1 Hz (any duty cycle is OK). Use resistor values between 1k and 1M and use capacitor values available in lab (see table in “Pinouts.doc available on course Canvas site). Show your calculations for RA, RB, and C. Clearly show all formulas and calculations and state when you are arbitrarily picking a value. (DONE) 2. Select the nearest standard 5% resistor values to the values for RA...
A clock pendulum oscillates at a frequency of 2.5 Hz . At t=0, it is released...
A clock pendulum oscillates at a frequency of 2.5 Hz . At t=0, it is released from rest starting at an angle of 11 ∘ to the vertical. Part A Ignoring friction, what will be the position (angle in radians) of the pendulum at t = 0.35 s ? Express your answer using two significant figures. θ = rad Part B Ignoring friction, what will be the position (angle in radians) of the pendulum at t = 1.60 s ?...
Assume that you have a clock signal with frequency of 50 Hz, and you want to...
Assume that you have a clock signal with frequency of 50 Hz, and you want to divide this signal into a frequency of 1 Hz signal. The counter chips you must use are synchronous decade (MOD 10) counter chips 74160 and synchronous MOD 16 counter chips 74161. Please use the back side of this paper to draw your circuit diagram with all the details. You can use counter frequency division method to step down a higher frequency signal to a...
Use EXCEL Construct Distribution: For each variable, construct Empirical distribution: Frequency Distribution and Relative Frequency Distribution...
Use EXCEL Construct Distribution: For each variable, construct Empirical distribution: Frequency Distribution and Relative Frequency Distribution (and if warranted, construct Cumulative Relative Distribution.) Apply a meaningful chart type to present each of the Relative Frequency Distribution (and Cum. Rel. Freq.) calculated in part “a”. (Freq. Dist. Plot is not necessary). Savings Months Employed Age Housing Credit Risk 1 $739 12 23 Own Low 2 $1,230 0 32 Own High 3 $389 119 38 Own High 4 $347 14 36 Own...
1. a) A machine part is undergoing SHM with a frequency of 4.95 Hz and amplitude...
1. a) A machine part is undergoing SHM with a frequency of 4.95 Hz and amplitude 1.85 cm. How long does it take the part to go from x=0 to x=? 1.85 cm? bi) An object is undergoing SHM with period 0.930 s and amplitude 0.320 m. At t = 0, the object is at x = 0.320 mand is instantaneously at rest. Calculate the time it takes the object to go from x = 0.320 m, to x =...
1) You are asked to design 4-bit Odd Number Count-Down BCD Counter making use of ONLY...
1) You are asked to design 4-bit Odd Number Count-Down BCD Counter making use of ONLY Falling Edge JK-flipflop(s) and logic gates. 2) Based on the requirements,write down: (i) state diagram (ii) excitation table (iii) input equations
1. Generate a sine wave with frequency 100 Hz. a. Sample the signal with a sampling...
1. Generate a sine wave with frequency 100 Hz. a. Sample the signal with a sampling frequency (i) 1000 Hz and (ii) 1050 Hz. b. For each frequency in Question 1(a), perform DFT for ONE (1) cycle and ONE and a HALF (1.5) cycles of the waveform. Comment on your observation.
Design a synchronous counter having the count sequence given by the following table. Use negative edge-triggered...
Design a synchronous counter having the count sequence given by the following table. Use negative edge-triggered T flip-flops provided with a clock. (i) Draw the state diagram of the counter. (ii) Build the counter's state table showing the synchronous inputs of the T flip-flops as well. (iii) Using Karnaugh maps, find the minimal sum-of-products form of the equations for the inputs to the flip-flops; assume the next states of the unused combinations to be "don't care states" (iv) Draw the...
9. A microwave oven has a frequency of 2450 Hz. You can use mini-marshmallows to locate...
9. A microwave oven has a frequency of 2450 Hz. You can use mini-marshmallows to locate the nodes of the standing wave inside the microwave. Describe how to measure the speed of light using mini-marshmallows and a microwave oven.
Question 1: SOUND a) A bystander hears a siren vary in frequency from 570 Hz to...
Question 1: SOUND a) A bystander hears a siren vary in frequency from 570 Hz to 398 Hz as a fire truck approaches, passes by, and moves away on a straight street. What is the speed of the truck? (Take the speed of sound in air to be 343 m/s.) By how many decibels do you reduce the sound intensity level due to a source of sound if you triple your distance from it? Assume that the waves expand spherically....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT