Question

In: Math

L'Hospitals rule find the limits a) lim   (tanx−secx) x→π/2- (b) lim    (lnx-1) / (x-e)      x→e...

L'Hospitals rule find the limits

a) lim   (tanx−secx)

x→π/2-

(b) lim    (lnx-1) / (x-e)

     x→e

(c)   lim       x^(1/lnx)

       x→0+

Solutions

Expert Solution


Related Solutions

Use LHopital rule to solve. lim (x-1)^(lnx) x goes to 1+
Use LHopital rule to solve. lim (x-1)^(lnx) x goes to 1+
Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) −...
Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) − (1/e^x−1) (c) lim x→0+ (x^√ x)
Use l'Hopital's rule to find lim x^2/e^x x-> infinity
Use l'Hopital's rule to findlim x^2/e^xx-> infinityUse the right sum with 4 rectangles to approximateIntegral of 2 top x^3dx0 bottom
lim[(tanx-1)/x] as x->0. lim[ (1+sin(4x))^cot(x)] as x -> 0 from the positive side. lim[ [(a^(1/x) +...
lim[(tanx-1)/x] as x->0. lim[ (1+sin(4x))^cot(x)] as x -> 0 from the positive side. lim[ [(a^(1/x) + b^(1/x))/2]^x] as x -> infinity
Evaluate the limit using L'Hôpital's rule lim x → 0 (e^x − x − 1)/2x^2
Evaluate the limit using L'Hôpital's rule lim x → 0 (e^x − x − 1)/2x^2
Use MuPAD to compute the following limits. a. lim x* x0+ b. lim (cos x)/tan
Use MuPAD to compute the following limits.  a. lim x* x0+ b. lim (cos x)/tan 
   1) lim (e^x + e^(-x) - 2) / (1 - cos 2x) as x approaches...
   1) lim (e^x + e^(-x) - 2) / (1 - cos 2x) as x approaches 0 2) lim sin 5x / 16x as x approaches 0 can someone evaluate the limit
2. Evaluate the following limits. (a) lim x→1+ ln(x) /ln(x − 1) (b) limx→2π x sin(x)...
2. Evaluate the following limits. (a) lim x→1+ ln(x) /ln(x − 1) (b) limx→2π x sin(x) + x ^2 − 4π^2/x − 2π (c) limx→0 sin^2 (3x)/x^2
lim x approaches to 0 ( - cos (x^2) - 1) / e^x^4 - 1 Answer...
lim x approaches to 0 ( - cos (x^2) - 1) / e^x^4 - 1 Answer using l'hopital Please dont skip steps and be detailed with explanation
Each of the following limits represents a derivative f '(a). Find f(x) and a. lim h→0...
Each of the following limits represents a derivative f '(a). Find f(x) and a. lim h→0 (5 + h)3 − 125 h f(x) = a = 5 lim x→2 x3 − 8 x − 2 f(x) = a = 2 lim h→0 52 + h − 25 h f(x) = a = 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT