Question

In: Advanced Math

USING MATLAB.... a.) Create anonymous functions: fa(x)=sin(x^2) fb(x)=sin^2(x) b.) Evaluate them both at x=1/2 pi c.)Evaluate...

USING MATLAB....

a.) Create anonymous functions:

fa(x)=sin(x^2)

fb(x)=sin^2(x)

b.) Evaluate them both at x=1/2 pi

c.)Evaluate them both at x=(0,1,2,...,10)^T

d.) Calculate fa(fb(2)) and fb(fa(2))

Solutions

Expert Solution

clc;
clear all;
%%% Answer a
fa=@(x)sin(x.^2);
fb=@(x)(sin(x)).^2;

%%% Answer b
x1=pi/2;
disp('fa at x1')
fa(x1)
disp('fb at x1')
fb(x1)
%%% Answer c
x=0:10;
disp('fa at x=0 to 10')
fa(x)'
disp('fb at x=0 to 10')
fb(x)'
%%% Answer d
disp('fb(fa(2))')
fb(fa(2))
disp('fa(fb(2))')
fa(fb(2))

fa at x1

ans =

   0.624265952639699

fb at x1

ans =

     1

fa at x=0 to 10

ans =

                   0
   0.841470984807897
-0.756802495307928
   0.412118485241757
-0.287903316665065
-0.132351750097773
-0.991778853443116
-0.953752652759472
   0.920026038196791
-0.629887994274454
-0.506365641109759

fb at x=0 to 10

ans =

                   0
   0.708073418273571
   0.826821810431806
   0.019914856674817
   0.572750016904307
   0.919535764538226
   0.078073020633754
   0.431631390896083
   0.978829740161692
   0.169841645877960
   0.295958969093304

fb(fa(2))

ans =

   0.471419918046348

fa(fb(2))

ans =

   0.631614802553066

>>


Related Solutions

using Matlab only please. function sail_boat x = linspace(0,100,2*pi); for x plot(x, sin(x),'b','LineWidth',3) axis([0,2*pi+.1,-1.05,1.05]) hold on...
using Matlab only please. function sail_boat x = linspace(0,100,2*pi); for x plot(x, sin(x),'b','LineWidth',3) axis([0,2*pi+.1,-1.05,1.05]) hold on boat(x,sin(x)) pause(.05) end function boat(x,y) xc = [x-.1,x+.1,x+.2,x-.2,x-.1]; yc = [y,y,y+.1,y+.1,y]; plot(xc,yc,'k') The function is supposed to plot a sine curve and an animation of a representation of a boat moving on top of the curve, but the code has several errors. Notice that the program uses modulization and it calls another function inside sail_boat. Correct the code and submit it with a new...
Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) −...
Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) − (1/e^x−1) (c) lim x→0+ (x^√ x)
2. Evaluate the following limits. (a) lim x→1+ ln(x) /ln(x − 1) (b) limx→2π x sin(x)...
2. Evaluate the following limits. (a) lim x→1+ ln(x) /ln(x − 1) (b) limx→2π x sin(x) + x ^2 − 4π^2/x − 2π (c) limx→0 sin^2 (3x)/x^2
4. For a signal x(n)=sin(2*pi*n/3) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow...
4. For a signal x(n)=sin(2*pi*n/3) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow graph. (Use decimation in frequency Algorithm)     
For a signal x(n)=sin(2*pi*n/5) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow graph....
For a signal x(n)=sin(2*pi*n/5) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow graph. (Use decimation in Time Algorithm).                                               
For a signal x(n)=sin(2*pi*n/5) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow graph....
For a signal x(n)=sin(2*pi*n/5) defined for n=0to7, evaluate the Fast Fourier Transform using signal flow graph. (Use decimation in Time Algorithm).                                               
Find dy/dx for a & b a) sin x+cos y=1 b) cos x^2 = xe^y c)Let...
Find dy/dx for a & b a) sin x+cos y=1 b) cos x^2 = xe^y c)Let f(x) = 5 /2 x^2 − e^x . Find the value of x for which the second derivative f'' (x) equals zero. d) For what value of the constant c is the function f continuous on (−∞,∞)? f(x) = {cx^2 + 2x, x < 2 ,   2x + 4, x ≥ 2}
Evaluate (please answer all of them) 1) ∫ 1.67 ?^(1/3) ?? = 2) ∫ [(?^3+ sin(4?))...
Evaluate (please answer all of them) 1) ∫ 1.67 ?^(1/3) ?? = 2) ∫ [(?^3+ sin(4?)) / (?^4−cos(4?)+4)] ?? = 3) ∫ ???^8(4?)cot(4?) ?? = 4) ∫ sec^2(4?) ???^5(4?) ?? = 5) ∫ (4x^3) / ((x^4)+3) dx=
Write the matlab command to sample the following signals at nyquist frequency 1.x(t)=3cos(2*pi(400)t +0.3*pi) 2.x(t)=cos^2(300*pi*t)
Write the matlab command to sample the following signals at nyquist frequency 1.x(t)=3cos(2*pi(400)t +0.3*pi) 2.x(t)=cos^2(300*pi*t)
Evaluate the integral from (1,pi/2,0) t0 (2,pi,0) of (2xsiny +x) dx +(x^2 cosy + 3sin^3(y)) dy...
Evaluate the integral from (1,pi/2,0) t0 (2,pi,0) of (2xsiny +x) dx +(x^2 cosy + 3sin^3(y)) dy giving the potential function
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT