Question

In: Math

The combined math and verbal scores for females taking the SAT-I test are normally distributed with...

The combined math and verbal scores for females taking the SAT-I test are normally distributed with a mean of 998 and a standard deviation of 202 (based on date from the College Board). If a college includes a minimum score of 1100 among its requirements, what percentage of females do not satisfy that requirement?

Solutions

Expert Solution

Let X be the combined SAT scores                  
X follows normal distribution mean μ and standard deviation σ                  
Given    μ = 998       σ = 202      
Since minimum score is 1100                  
Percentage of females not satisfying the score is given by                  
P(X < 1100)                  
Converting to z-scores                  
P(X < 1100) = P(Z < Z')                  
where                  
   
z-score = 0.51                  
P(X < 1100) = P(Z < 0.51)                  
Using standard normal tables we get P(Z < 0.51)                  
P(X < 1100) = P(Z < 0.51)                  
   = 0.6950              
Percentage of females do not satisfy that requirement = 69.50%                  
                  


Related Solutions

Scores for men on the verbal portion of the SAT-I test are normally distributed with a...
Scores for men on the verbal portion of the SAT-I test are normally distributed with a mean of 509 and a standard deviation of 112. (a)  If 1 man is randomly selected, find the probability that his score is at least 586. (b)  If 10 men are randomly selected, find the probability that their mean score is at least 586. (c) 10 randomly selected men were given a review course before taking the SAT test. If their mean score is 586, is...
Scores for men on the verbal portion of the SAT-I test are normally distributed with a...
Scores for men on the verbal portion of the SAT-I test are normally distributed with a mean of 509 and a standard deviation of 112. Randomly selected men are given the Columbia Review Course before taking the SAT test. Assume that the course has no effect. a. If 1 of the men is randomly selected, find the probability his score is at least 590. b. If 16 of the men are randomly selected, find the probability that their mean score...
Scores for men on the verbal portion of the SAT-I test are normally distributed with a...
Scores for men on the verbal portion of the SAT-I test are normally distributed with a mean of 509 and a standard deviation of 112. (a)  If 1 man is randomly selected, find the probability that his score is at least 585. (b)  If 16 men are randomly selected, find the probability that their mean score is at least 585. 16 randomly selected men were given a review course before taking the SAT test. If their mean score is 585, is there...
Scores for men on the verbal portion of the SAT test are normally distributed with a...
Scores for men on the verbal portion of the SAT test are normally distributed with a mean of 509 and a standard deviation of 112. Randomly selected men are given the Columbia Review Course before taking the SAT test. Assume the course has no effect. a) If 1 of the men is randomly selected, find the probability his score is at least 590 b) If 16 of the men are randomly selected, find the probability that their mean score is...
The table below shows math and verbal SAT scores for six freshman. SAT Scores Verbal 428...
The table below shows math and verbal SAT scores for six freshman. SAT Scores Verbal 428 386 653 316 438 323 Math 373 571 686 319 607 440 Verify there is a significant correlation at 10% significance using Math score and the dependent variable and Verbal score as the independent variable. Be sure to include your test, sample correlation coefficient, p- value, decision rule and conclusion. Write your prediction equation. Predict the following math scores (if any are not valid,...
SAT verbal scores are normally distributed with a mean of 430 and a standard deviation of...
SAT verbal scores are normally distributed with a mean of 430 and a standard deviation of 120 (based on data from the College Board ATP). If a sample of 35 students are selected randomly, find the probability that the sample mean is above 470. A.) 0.244 B.) 0.9756 C.) 0.0445 D.) 0.0244
Scores on the SAT Mathematics test are believed to be normally distributed. The scores of a...
Scores on the SAT Mathematics test are believed to be normally distributed. The scores of a simple random sample of five students who recently took the exam are 570, 620, 710, 540 and 480. We want to find a 95% confidence interval of the population mean of SAT math scores. A) Calculate the point estimate. (Round to four decimal places as​ needed.) B) Calculate the sample standard deviation. (Round to four decimal places as​ needed.) C) Calculate the standard error...
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1521 and a standard deviation of 298. The local college includes a minimum score of 1044 in its admission requirements. What percentage of students from this school earn scores that fail to satisfy the admission requirement?
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1488 and a standard deviation of 292. The local college includes a minimum score of 2014 in its admission requirements. What percentage of students from this school earn scores that fail to satisfy the admission requirement? P(X < 2014) =________ % Enter your answer as a percent accurate to 1 decimal place (do not enter the "%" sign). Answers obtained using...
Suppose that SAT math scores are normally distributed with a mean of 516 and a standard...
Suppose that SAT math scores are normally distributed with a mean of 516 and a standard deviation of 115, while ACT math scores have a normal distribution with a mean of 22 and a standard deviation of 5. James scored 650 on the SAT math and Jacob scored 29 on the ACT math. Who did better in terms of the standardized z-score? Group of answer choices James Jacob They did relatively the same. Impossible to tell because of the scaling
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT