Question

In: Statistics and Probability

Q4: Suppose X1,X2,...,Xn follows Bernoulli(p), and Y1,Y2,...,Ym follows Bernoulli(p + q), where both 0 < p,q...

Q4: Suppose X1,X2,...,Xn follows Bernoulli(p), and Y1,Y2,...,Ym follows Bernoulli(p + q), where both 0 < p,q < 0.5. Compute the moment estimator of p and q using first moments.

Solutions

Expert Solution

Solution :-

Given data:-

X 1, X 2,...,X n follows the Bernoulli (p),

Y 1, Y 2,...,Y m follows the  Bernoulli (p +q)

where both are in the condition is 0 < p,q < 0.5

Now, we have to find out the :-

Compute the moment estimator of p and q using first moments :-

The moment estimator of P using first moments. is:-

We know, the first moment of p is,  E(X) = P

    p =

The moment estimator of P is,   =

The moment estimator of q using first moments. is:-

We know, the first moment of q is,  E(Y) = P+q

p+q =

The moment estimator of q  is,  p+q =

  q = -  p

  We know, p =  , then q =   -   

The moment estimator of    is, q =   -


Related Solutions

Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y...
Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y | X = x is modeled by Y=β0+β1x+ε, ε∼N(0,σ^2), where β0,β1and σ^2 are unknown. Let β1 denote the mle of β1. Derive V(βhat1).
Two identical loudspeakers are located at (x1, y1) = (0, 0) and (x2, y2) = (2.5...
Two identical loudspeakers are located at (x1, y1) = (0, 0) and (x2, y2) = (2.5 m,−0.5 m). The loudspeakers are driven by separate amplifiers, so that the loudspeakers are out of phase with each other, and produce sound waves with frequency of 650 Hz. The ambient temperature of air is 37 0C. A small microphone is moved along the y-axis. 1. At what distances along the y-axis will there be constructive interference? 2. At what distances along the y-axis...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove that (R2,ρ) is a metric space. (b) In (R2,ρ), sketch the open ball with center (0,0) and radius 1. 2. Let {xn} be a sequence in a metric space (X,ρ). Prove that if xn → a and xn → b for some a,b ∈ X, then a = b. 3. (Optional) Let (C[a,b],ρ) be the metric space discussed in example 10.6 on page 344...
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with...
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with the variables Xi normally distributed with mean μ1 and variance σ12 and the variables Yi normally distributed with mean μ2 and variance σ22. The difference between the sample means, X − Y, is then a linear combination of m + n normally distributed random variables and, by this theorem, is itself normally distributed. (a) Find E(X − Y). (b) Find V(X − Y). (c)...
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t...
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t where 0 ≤ t ≤ 1 describe the line segment that joins the points P1(x1, y1) and P2(x2, y2). Use a graphing device to draw the triangle with vertices A(1, 1), B(4, 3), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of equations. Let x and y be in terms of t.)
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z....
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z. Show that the relation∼is an equivalence relation and describe the equivalence class of the point (0,1).
Let X1,X2,...,Xn and Y1,Y2,...,Ym be independent random samples drawn from normal distributions with means μX and...
Let X1,X2,...,Xn and Y1,Y2,...,Ym be independent random samples drawn from normal distributions with means μX and μY , respectively, and with the same 2 known variance σ . Use the generalized likelihood ratio criterion to derive a test procedure for choosing between H0:μX =μY and H1:μX not equal to μY.
Suppose X1, X2, ..., Xn iid∼ Multinomial (p). a) What is the MLE for the situation...
Suppose X1, X2, ..., Xn iid∼ Multinomial (p). a) What is the MLE for the situation where p = (p1, p2, p3, p4), such that p1 = p2 and p3 = p4? b) What can you interpret from these estimates in terms of the number of observations of type k (k = 1, 2, 3, 4) compared the total number of trials n?
Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...
Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1 + X2) (iii) Calculate Var(X1X2)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT