Question

In: Physics

Two identical loudspeakers are located at (x1, y1) = (0, 0) and (x2, y2) = (2.5...

Two identical loudspeakers are located at (x1, y1) = (0, 0) and (x2, y2) = (2.5 m,−0.5 m). The loudspeakers are driven by separate amplifiers, so that the loudspeakers are out of phase with each other, and produce sound waves with frequency of 650 Hz. The ambient temperature of air is 37 0C. A small microphone is moved along the y-axis.

1. At what distances along the y-axis will there be constructive interference?

2. At what distances along the y-axis will there be destructive interference?

3. If, however, the microphone starts at the origin and is moving out to infinity at a rate of 10 m/s, what is the apparent frequency of the loudspeakers? How does this change the results from (a) and (b)? Explain.

Solutions

Expert Solution


Related Solutions

1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove that (R2,ρ) is a metric space. (b) In (R2,ρ), sketch the open ball with center (0,0) and radius 1. 2. Let {xn} be a sequence in a metric space (X,ρ). Prove that if xn → a and xn → b for some a,b ∈ X, then a = b. 3. (Optional) Let (C[a,b],ρ) be the metric space discussed in example 10.6 on page 344...
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t...
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t where 0 ≤ t ≤ 1 describe the line segment that joins the points P1(x1, y1) and P2(x2, y2). Use a graphing device to draw the triangle with vertices A(1, 1), B(4, 3), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of equations. Let x and y be in terms of t.)
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z....
We define a relation ∼ on R^2 by (x1,y1)∼(x2,y2) if and only if (y2−y1) ∈ 2Z. Show that the relation∼is an equivalence relation and describe the equivalence class of the point (0,1).
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with...
Suppose that X1, X2, , Xm and Y1, Y2, , Yn are independent random samples, with the variables Xi normally distributed with mean μ1 and variance σ12 and the variables Yi normally distributed with mean μ2 and variance σ22. The difference between the sample means, X − Y, is then a linear combination of m + n normally distributed random variables and, by this theorem, is itself normally distributed. (a) Find E(X − Y). (b) Find V(X − Y). (c)...
Closest and Farthest points. Distance between two points (x1,y1) and (x2, y2) can becalculated...
Closest and Farthest points. Distance between two points (x1, y1) and (x2, y2) can becalculated as d = sqt( (x1 − x2) ^2 + (y1 − y2)^ 2). You are given the coordinates of a sourcepoint and three destination points. Write a Python program stored in a file q8.py thattakes these information as input and determines the closest and farthest destinationpoints from the source point.ex:Enter source coordinates : 0 0Enter point A coordinates : 1 4Enter point B coordinates :...
The set R^2 with addition and scalar multiplication defined by (x1, y1) + (x2, y2) =...
The set R^2 with addition and scalar multiplication defined by (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) c(x1, y1) = (cx1, y1) is not a vector space. Determine which axiom fails and find a counterexample that shows that it fails.
Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y...
Consider a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) where Y | X = x is modeled by Y=β0+β1x+ε, ε∼N(0,σ^2), where β0,β1and σ^2 are unknown. Let β1 denote the mle of β1. Derive V(βhat1).
Let Y1 and Y2 have joint pdf f(y1, y2) = (6(1−y2), if 0≤y1≤y2≤1 0, otherwise. a)...
Let Y1 and Y2 have joint pdf f(y1, y2) = (6(1−y2), if 0≤y1≤y2≤1 0, otherwise. a) Are Y1 and Y2 independent? Why? b) Find Cov(Y1, Y2). c) Find V(Y1−Y2). d) Find Var(Y1|Y2=y2).
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf of Y1, Y2, Y3, and the marginal pdfs.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT