Question

In: Statistics and Probability

Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...

  1. Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf

                   f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1

                                      0,                  otherwise

(ii) For the same joint pdf, calculate E(X1X2) and E(X1 + X2)

(iii) Calculate Var(X1X2)

Solutions

Expert Solution

(ii) The expected value of X1X2 here is computed as:

Integrating with respect to x1, we get here:

Now integrating with respect to x2, we get here:

Therefore 2/9 is the expected value of X1X2 here.

Now the expected value of X1 + X2 is computed as: E(X1) + E(X2)

Integrating with respect to x1, we get here:

Integrating with respect to x2, we get here:

Therefore 1 is the expected value of X1 + X2 here.

(ii) The second moment of X1X2 here is first computed as:

Integrating with respect to x1, we get here:

Integrating with respect to x2, we get here:

Now the variance of X1X2 is computed here as:

Therefore 0.0340 is the required probability here.


Related Solutions

   3. (i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf...
   3. (i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1 + X2) (iii) Calculate Var(X1X2)
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1 > 0, x2 > 0 0 elsewhere . For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2. (a) Show that the pdf of W is fW (w) = " 1 w1− w2 (e−w/w1 − e−w/w2) w > 0 0 elsewhere . (b) Verify that fW (w) > 0 for w > 0. (c) Note that the pdf fW...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf...
(i) Find the marginal probability distributions for the random variables X1 and X2 with joint pdf                     f(x1, x2) = 12x1x2(1-x2) , 0 < x1 <1   0 < x2 < 1 , otherwise             (ii) Calculate E(X1) and E(X2)     (iii) Are the variables X1 ­and X2 stochastically independent? (iv) Given the variables in the question, find the conditional p.d.f. of X1 given 0<x2< ½ and the conditional expectation E[X1|0<x2< ½ ].
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36 for X1 = 1, 2, 3 and X2 = 1, 2, 3, find the joint probability distribution of X1*X2 and the joint probability distribution of X1/X2.
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where...
Let ?1 and ?2 have the joint pdf f (?1, ?2)= 6?2     0<?2<?1<1 =0 else where A. Find conditional mean and conditional variance ?1given?2 . B. Theorem of total mean and total variance?1given?2 .(urgently needed)
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find:...
(a) Let X and Y have the joint pdf ???(?, ?)=1, 0≤x≤3/2, 0≤y≤1, zero elsewhere. Find: 1 The pdf of Z=X+Y 2 The pdf of Z=X.Y
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 −...
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 − 1)^1/3 The prices of inputs are w1 = w2 = 1. (a) Compute the firm’s cost function c(y). (b) Compute the marginal and the average cost functions of the firm. (c) Compute the firm’s supply S(p). What is the smallest price at which the firm will produce? 2 (d) Suppose that in the short run, factor 2 is fixed at ¯x2 = 28. Compute...
X1 and X2 are two discrete random variables. The joint probability mass function of X1 and...
X1 and X2 are two discrete random variables. The joint probability mass function of X1 and X2, p(x1,x2) = P(X1 = 1,X2 = x2), is given by p(1, 1) = 0.025, p(1, 2) = 0.12, p(1, 3) = 0.21 p(2, 1) = 0.18, p(2, 2) = 0.16, p(2, 3) = c. and p(x1, x2) = 0 otherwise. (a) Find the value of c. (b) Find the marginal probability mass functions of X1 and X2. (c) Are X1 and X2 independent?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT