Question

In: Advanced Math

Consider the equation: ?̇ +2? = ?(?) with initial condition x(0) = 2 (a) If u(t)...

Consider the equation: ?̇ +2? = ?(?) with initial condition x(0) = 2

(a) If u(t) = 0, find the solution ?(?). What is ?(?) as t -> ∞?

(b) If u(t) = 4+t, find the solution ?(?). What is ?(?) as t -> ∞?

(c) If u(t) = ?3?, find the solution ?(?). What is ?(?) as t -> ∞?

(d) If u(t) = δ(t), find the solution ?(?). What is ?(?) as t -> ∞?

Solutions

Expert Solution


Related Solutions

Consider the equation uux + uy = 0 with the initial condition u(x, 0) = h(x)...
Consider the equation uux + uy = 0 with the initial condition u(x, 0) = h(x) = ⇢ 0 for x > 0 uo for x < 0,   with uo< 0. Show that there is a second weak solution with a shock along the line x = uo y / 2    The solution in both mathematical and graphical presentation before and after the shock.
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0...
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0 ≤ x ≤ 2 and t ≥ 0. ∂ 2u ∂t2 = 0.01 ∂ 2u ∂x2 (0 ≤ x ≤ 2, t ≥ 0) (1) ∂u ∂x(t, 0) = 0 and ∂u ∂x(t, 2) = 0 (2) u(0, x) = f(x) = x if 0 ≤ x ≤ 1 1 if 1 ≤ x ≤ 2. (a) Compute the coefficients a0, a1, a2, ....
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution...
Consider the differential equation y′(t)+9y(t)=−4cos(5t)u(t), with initial condition y(0)=4, A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______ +______ C)...
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write...
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write the series expansion for a solution u(x,t)
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Find the solution to the heat equation on 0 < x < l, with u(0, t)...
Find the solution to the heat equation on 0 < x < l, with u(0, t) = 0, ux(l, t) = 0, and u(x, 0) = phi(x). This is sometimes called a "mixed" boundary condition.
Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1
Consider the system modeled by the differential equation                               dy/dt - y = t    with initial condition y(0) = 1 the exact solution is given by y(t) = 2et − t − 1   Note, the differential equation dy/dt - y =t can be written as                                               dy/dt = t + y using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt                               (y(t + Dt) – y(t))/ Dt = (t + y)                                y(t + Dt) =...
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2)...
(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2) initial condition { U(0,x) = { x, IxI <1
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x)...
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x) = 0. Is h(t) = u(t,0) a periodic function? (PDE)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT