In: Finance
Problem 15-05 (Algorithmic)
Consider the following time series data.
Week | 1 | 2 | 3 | 4 | 5 | 6 |
Value | 16 | 13 | 18 | 11 | 15 | 14 |
Week | Time Series Value |
Forecast |
---|---|---|
1 | 16 | |
2 | 13 | |
3 | 18 | |
4 | 11 | |
5 | 15 | |
6 | 14 |
Week | Time Series Value |
Forecast |
---|---|---|
1 | 16 | |
2 | 13 | |
3 | 18 | |
4 | 11 | |
5 | 15 | |
6 | 14 |
a)
Ft= forecast for period t,
At= actual demand in period t,
Et= forecast error in period t.
The 3-period moving average forecast for period t, Ft=(At−1+At−2+At−3)/3
**week 4 would be the 1st week to generate a 3-week moving average forecast
**Forecast for week 7 would be (A4+A5+A6)/3
**MSE (Mean Squared Error) = =(E4^2+E5^2+E6^2)/3
WEEK | TIME SERIES VALUE (At) | 3 WEEK MOVING AVG (Ft) | Et=At- Ft |
1 | 16 | ||
2 | 13 | ||
3 | 18 | ||
4 | 11 | 15.66666667 | -4.66667 |
5 | 15 | 14 | 1 |
6 | 14 | 14.66666667 | -0.66667 |
7 | F7 (forecast for week 7) | 13.33333333 | |
MSE (Mean Squared Error) | 7.740740741 |
b)
WEEK | TIME SERIES VALUE (At) | Forecasting(Using exponetial a=0.2) | Lt | SSE |
0 | 14.5 | |||
1 | 16 | 14.5 | 14.8 | 0.09 |
2 | 13 | 14.8 | 14.44 | 0.1296 |
3 | 18 | 14.44 | 15.152 | 0.506944 |
4 | 11 | 15.152 | 14.3216 | 0.689564 |
5 | 15 | 14.3216 | 14.45728 | 0.018409 |
6 | 14 | 14.45728 | 14.365824 | 0.008364 |
7 | F7 | 14.365824 | SSE | 1.442881 |
SSE | sum of (at-forecasting)^2 | 1.442881422 | ||
MSE | SSE/(t-1) | 0.240480237 | ||
F7 | 14.365824 | |||
Mean (L0) | 14.5 |
Alpha | 0.2 |
Mean (L0) | 14.5 |
L1 | ay1 + (1-a)L0 |
Formula for forecasting
L1 | ay1 + (1-a)L0 |