Question

In: Math

Look at these two functions f(x) = -x^2-x-6 g(x) = (x+1)(x^2+6x+9) a. Which function changes direction...

Look at these two functions
f(x) = -x^2-x-6
g(x) = (x+1)(x^2+6x+9)

a. Which function changes direction more times and by how much?

b. Which function touches the x-axis more times and by how much?

c. At what points do each function touch the x-axis?

d. How does the end behavior of each function compare to one another?

Solutions

Expert Solution

The solution is given below but you have to read the full solution carefully because it is conceptual


Related Solutions

1)For the function f(x)=6x^2−2x, evaluate and simplify. f(x+h)−f(x)/h 2)Evaluate the limit: limx→−6 if x^2+5x−6/x+6 3)A bacteria...
1)For the function f(x)=6x^2−2x, evaluate and simplify. f(x+h)−f(x)/h 2)Evaluate the limit: limx→−6 if x^2+5x−6/x+6 3)A bacteria culture starts with 820820 bacteria and grows at a rate proportional to its size. After 22 hours there will be 16401640 bacteria. (a) Express the population PP after tt hours as a function of tt. Be sure to keep at least 4 significant figures on the growth rate. P(t)P(t)= (b) What will be the population after 8 hours? bacteria (c) How long will it...
For the function a) f(x)=x^3-9x^2+23x-15 b)f(x)=(x+3)^2(2x+1)(x-1) c)f(x)=-(x^2-6x+9)(x^2-x-6) Find: 1) the zeros 2) the y-intercept 3) left-right...
For the function a) f(x)=x^3-9x^2+23x-15 b)f(x)=(x+3)^2(2x+1)(x-1) c)f(x)=-(x^2-6x+9)(x^2-x-6) Find: 1) the zeros 2) the y-intercept 3) left-right end behavior 4) the sketch of the graph
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f,...
The derivative of a function is f'(x)=-6x^2(x-1)(x+2). How can I identify any local extrema of f, if any? How can use the First Derivative test to determine if any of the local extreme identified are a relative maximum or a relative minimum?
1. Determine the absolute minimum and maximum values of the function f(x) = x^3 - 6x^2...
1. Determine the absolute minimum and maximum values of the function f(x) = x^3 - 6x^2 + 9x + 1 in the following intervals: a) [0,5] b) [-1,2] 2. A company produces and sells x number of calculators per week. The functions for demand and cost are the following: p = 500 - 0.5x and c(x) = 10,000 + 135x. Determine: a) Function of weekly revenue b) Price and number of calculators that have to be sold to maximize revenue...
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain x^2/9 + y^2 ≤ 1. This function has a single critical point at (0, 0) (a) Using an appropriate parameterization of the boundary of the domain, find the critical points of f(x, y) restricted to the boundary. (b) Using the method of Lagrange Multipliers, find the critical points of f(x, y) restricted to the boundary. (c) Assuming that the critical points you found were...
Consider the following rational function: f(x) = 18 (x-1)/(x^2 - 9) Which of the following are...
Consider the following rational function: f(x) = 18 (x-1)/(x^2 - 9) Which of the following are true? A. The function touches but does not cross the horizontal axis at: x= 1. B. When x is very large and positive, the value of the f(x) approaches to zero. C. The function cuddles up to the vertical lines which pass through x = - 3 and x =3. D. The function cuts the horizontal axis at x = 3 and x =...
Let f(x) and g(x) be two generic functions. Assume limx→0(f(x)+2g(x))=2 & limx→0(f(x)−g(x))=8. Compute limx→1(f(lnx)/g(x2−x)). A. It...
Let f(x) and g(x) be two generic functions. Assume limx→0(f(x)+2g(x))=2 & limx→0(f(x)−g(x))=8. Compute limx→1(f(lnx)/g(x2−x)). A. It cannot be computed B. 2 C. 4 D. -3 E. -4
find all intervals on which f(x)=x^3+6x^2+9x+1 is decreasing
find all intervals on which f(x)=x^3+6x^2+9x+1 is decreasing
Consider the following five utility functions. G(x,y) = -1 / [ min(6x,2y)+1] H(x,y) = min(6x,6y)2 L(x,y)...
Consider the following five utility functions. G(x,y) = -1 / [ min(6x,2y)+1] H(x,y) = min(6x,6y)2 L(x,y) = min(6x,2y) - 10000000000 U(x,y) = min(3x, y)3 W(x,y) = min (6x, y)2 + 2 Z(x,y) = min (x,2y) Which of the above functions, if any, is homogeneous of degree 2? a. L b.W c.Z d.None. e.H f.G g.U
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT