Question

In: Advanced Math

Consider the following rational function: f(x) = 18 (x-1)/(x^2 - 9) Which of the following are...

Consider the following rational function:

f(x) = 18 (x-1)/(x^2 - 9)

Which of the following are true?

A. The function touches but does not cross the horizontal axis at: x= 1.

B. When x is very large and positive, the value of the f(x) approaches to zero.

C. The function cuddles up to the vertical lines which pass through x = - 3 and x =3.

D. The function cuts the horizontal axis at x = 3 and x = -3.

E. The vertical intercept of the function is (0,2) and the horizontal intercept is (1, 0).

Solutions

Expert Solution

Given,

A. Clearly, at ,

For , while for . Since the sign of the function changes at it crosses the horizontal axis at

------------

B. When is large and positive, i.e.

Thus, indeed approaches 0 when is very large and positive

-------------

C. The poles of the function correspond to . which correspond to . Thus, it is true that the function cuddles up to the vertical lines which pass through

-------------

D. We have already seen that the function crosses the horizontal axis only at . So this is not true.

-------------

E. Vertical Intercept corresponds to . At

Thus, the vertical intercept is . We have already seen in (A) that the horizontal intercept is . So this is true.

--------------

Thus, the true statements are B,C,E


Related Solutions

Given the following rational function:             F(X) = (2X^2 - 20) / [( X - 5 )^2]...
Given the following rational function:             F(X) = (2X^2 - 20) / [( X - 5 )^2] Find all horizontal and vertical asymptotes Find the first derivative of F(X) and simplify Find the critical values for X and determine if they are at a maximum or minimum, using the First Derivative Sign Test. Find the Second Derivative and Use it to confirm your answers to part c. You may keep the 2nd derivative in “rough” form and simply substitute in the...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
Consider the function and the value of a. f(x) = −2 x − 1 , a...
Consider the function and the value of a. f(x) = −2 x − 1 , a = 9. (a) Use mtan = lim h→0 f(a + h) − f(a) h to find the slope of the tangent line mtan = f '(a). mtan =   (b)Find the equation of the tangent line to f at x = a. (Let x be the independent variable and y be the dependent variable.)   
Consider the function. f(x) = x^2 − 1, x ≥ 1 (a) Find the inverse function...
Consider the function. f(x) = x^2 − 1, x ≥ 1 (a) Find the inverse function of f. f ^−1(x) = (b) Graph f and f ^−1 on the same set of coordinate axes. (c) Describe the relationship between the graphs. The graphs of f and f^−1 are reflections of each other across the line ____answer here___________. (d) State the domain and range of f and f^−1. (Enter your answers using interval notation.) Domain of f Range of f Domain...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain x^2/9 + y^2 ≤ 1. This function has a single critical point at (0, 0) (a) Using an appropriate parameterization of the boundary of the domain, find the critical points of f(x, y) restricted to the boundary. (b) Using the method of Lagrange Multipliers, find the critical points of f(x, y) restricted to the boundary. (c) Assuming that the critical points you found were...
Consider the function f(x) =x/x^2+1 (a) Find all values ofxfor which f(x) is positive or negative....
Consider the function f(x) =x/x^2+1 (a) Find all values ofxfor which f(x) is positive or negative. Discuss the behaviour of f(x) as x gets very large (in both the positive and negative direction). (b) Draw a sign diagram clearly showing the values of x for which f(x) is increasing and decreasing. Hence find the critical points off(x) and determine their nature. (c) Draw a sign diagram clearly showing the values of x for which f(x) is concave up and concave...
Consider the function f(x) =x/x^2+1 (a) Find all values ofxfor which f(x) is positive or negative....
Consider the function f(x) =x/x^2+1 (a) Find all values ofxfor which f(x) is positive or negative. Discuss the behaviour of f(x) as x gets very large (in both the positive and negative direction). (b) Draw a sign diagram clearly showing the values of x for which f(x) is increasing and decreasing. Hence find the critical points off(x) and determine their nature. (c) Draw a sign diagram clearly showing the values of x for which f(x) is concave up and concave...
Consider a distribution with the density function f(x) = x^2/3 for −1 ≤ x ≤ 2....
Consider a distribution with the density function f(x) = x^2/3 for −1 ≤ x ≤ 2. (a) Randomly pick a sample of size 20 from this distribution, find the probability that there are 2 to 4 (inclusive) of these taking negative values. (b) Randomly pick an observation X from this distribution, find the probability that it is between 1.2 and 1.4, i.e., P (1.2 < X < 1.4). (c) Randomly pick a sample of size 40 from this distribution, and...
Suppose f(x) is a rational function in which the degree of the numerator is greater than...
Suppose f(x) is a rational function in which the degree of the numerator is greater than the degree of the denominator. To integrate f(x), the first step is a) Factor the denominator into distinct linear factors b) Factor the numerator into distinct linear factors c) Polynomial long division d) Make a rationalizing substitution e) None of the above
Consider the following function: f (x , y , z ) = x 2 + y...
Consider the following function: f (x , y , z ) = x 2 + y 2 + z 2 − x y − y z + x + z (a) This function has one critical point. Find it. (b) Compute the Hessian of f , and use it to determine whether the critical point is a local man, local min, or neither? (c) Is the critical point a global max, global min, or neither? Justify your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT