In: Statistics and Probability
Here are summary statistics for randomly selected weights of newborn girls: nequals176, x overbarequals32.7 hg, sequals6.8 hg. Construct a confidence interval estimate of the mean. Use a 99% confidence level. Are these results very different from the confidence interval 31.3 hgless thanmuless than34.5 hg with only 18 sample values, x overbarequals32.9 hg, and sequals2.4 hg?
Level of Significance ,    α =    0.01
sample std dev ,    s =    6.8000
Sample Size ,   n =    176
Sample Mean,    x̅ =   32.700
degree of freedom=   DF=n-1=  
175  
't value='   tα/2=   2.6042   [Excel
formula =t.inv(α/2,df) ]
          
Standard Error , SE =   s/√n =  
0.5126  
margin of error ,   E=t*SE =  
1.335  
99% confidence interval is       
   
Interval Lower Limit=   x̅ - E =   
31.4   
Interval Upper Limit=   x̅ + E =   
34.0
----------------
with 18 samples and  xbar =32.9 hg, and s =2.4
hg
confidence interval is       
   
Interval Lower Limit=   x̅ - E =   
31.3
Interval Upper Limit=   x̅ + E =   
34.5
------------------
these results are not very different from the confidence interval (31.3,34.5).
NO, because confidence interval limits are similar.