FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ –
4Y = 0
COMPUTE:
L {7 e 3t – 5 cos ( 2t ) – 4 t 2
}
COMPUTE:
L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ]
}
SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE
TRANSFORMS:
Y” + 6Y’ + 5Y = 12 e t
WHEN : f ( 0 ) = -...
1) . Solve the IVP:
y^''+6y^'+5y=0, y(0)=1, y^' (0)=3
2. Find the general solution to each of the following:
a) y^''+2y^'+5y=e^2x
b) y^''+2x/(x^2+1) y'=x
c) y^''+4y=1/(sin(2x)) (use variation of parameters)
A. Find a particular solution to the nonhomogeneous differential
equation y′′ + 4y′ + 5y = −15x
+ e-x
y =
B. Find a particular solution to
y′′ + 4y = 16sin(2t).
yp =
C. Find y as a function of x if
y′′′ − 10y′′ + 16y′ =
21ex,
y(0) = 15, y′(0) = 28,
y′′(0) = 17.
y(x) =