In: Math
Ch.8 #5
Consider the following time series data.
Quarter | Year 1 | Year 2 | Year 3 |
1 | 4 | 6 | 7 |
2 | 2 | 3 | 6 |
3 | 3 | 5 | 6 |
4 | 5 | 7 | 8 |
1) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) If the constant is "1" it must be entered in the box. Do not round intermediate calculation.
Value = ________ + __________ Qtr1 + ___________ Qtr2 + ___________ Qtr3
2) Compute the quarterly forecasts for next year based on the model you developed in part (b). If required, round your answers to three decimal places. Do not round intermediate calculation.
Quarter 1 forecast _____________
Quarter 2 forecast_____________
Quarter 3 forecast_____________
Quarter 4 forecast_____________
3) Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (b) to capture seasonal effects and create a variable t such that t = 1 for Quarter 1 in Year 1, t = 2 for Quarter 2 in Year 1,… t = 12 for Quarter 4 in Year 3.
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300)
Value = __________ + __________ Qtr1 + __________ Qtr2 + ___________ Qtr3 + ________ t
4) Compute the quarterly forecasts for next year based on the model you developed in part (d).
Quarter 1 forecast _____________
Quarter 2 forecast_____________
Quarter 3 forecast_____________
Quarter 4 forecast_____________
5) Is the model you developed in part (b) or the model you developed in part (d) more effective?
If required, round your intermediate calculations and final answer to three decimal places. |
Model developed in part (b) | Model developed in part (d) | |
MSE |
Justify your answer.
a.
Actual Demand y | t | Q1 | Q2 | Q3 | quarter |
4 | 1 | 1 | 0 | 0 | 5.6666 |
2 | 2 | 0 | 1 | 0 | 3.6666 |
3 | 3 | 0 | 0 | 1 | 4.6666 |
5 | 4 | 0 | 0 | 0 | 6.6666 |
6 | 5 | 1 | 0 | 0 | 5.6666 |
3 | 6 | 0 | 1 | 0 | 3.6666 |
5 | 7 | 0 | 0 | 1 | 4.6666 |
7 | 8 | 0 | 0 | 0 | 6.6666 |
7 | 9 | 1 | 0 | 0 | 5.6666 |
6 | 10 | 0 | 1 | 0 | 3.6666 |
6 | 11 | 0 | 0 | 1 | 4.6666 |
8 | 12 | 0 | 0 | 0 | 6.6666 |
13 | 1 | 0 | 0 | 5.6666 | |
14 | 0 | 1 | 0 | 3.6666 | |
15 | 0 | 0 | 1 | 4.6666 | |
16 | 0 | 0 | 0 | 6.6666 |
after regression on Quareter only
SUMMARY OUTPUT | ||||
Regression Statistics | ||||
Multiple R | 0.631054743 | |||
R Square | 0.398230088 | |||
Adjusted R Square | 0.172566372 | |||
Standard Error | 1.683250823 | |||
Observations | 12 | |||
ANOVA | ||||
df | SS | MS | F | |
Regression | 3 | 15 | 5 | 1.764706 |
Residual | 8 | 22.66666667 | 2.833333 | |
Total | 11 | 37.66666667 | ||
Coefficients | Standard Error | t Stat | P-value | |
Intercept | 6.666666667 | 0.971825316 | 6.859943 | 0.00013 |
Q1 | -1 | 1.374368542 | -0.72761 | 0.4876 |
Q2 | -3 | 1.374368542 | -2.18282 | 0.060595 |
Q3 | -2 | 1.374368542 | -1.45521 | 0.183698 |
Value = 6.666666667 - Qtr1t - 3 Qtr2t -2 Qtr3t
c)
Quarter 1 forecast 5.6666 | |
Quarter 2 forecast 3.6666 | |
Quarter 3 forecast 4.6666 | |
Quarter 4 forecast 6.6666 |
d)
when we include time also
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.9793216 | |||||
R Square | 0.959070796 | |||||
Adjusted R Square | 0.93568268 | |||||
Standard Error | 0.469295318 | |||||
Observations | 12 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 4 | 36.125 | 9.03125 | 41.00676 | 6.04E-05 | |
Residual | 7 | 1.541667 | 0.220238 | |||
Total | 11 | 37.66667 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 3.416666667 | 0.428406 | 7.9753 | 9.3E-05 | 2.403647 | 4.429686 |
t | 0.40625 | 0.04148 | 9.79382 | 2.45E-05 | 0.308165 | 0.504335 |
Q1 | 0.21875 | 0.402878 | 0.542968 | 0.604002 | -0.73391 | 1.171406 |
Q2 | -2.1875 | 0.392056 | -5.57956 | 0.000834 | -3.11456 | -1.26044 |
Q3 | -1.59375 | 0.385417 | -4.13514 | 0.004376 | -2.50512 | -0.68238 |
Value = 3.416666667 + 0.21875* Qtr1t -2.1875* Qtr2t -1.59375 Qtr3t + 0.40625* t
e)
8.91666667 |
6.91666667 |
7.91666667 |
9.91666667 |
f)
(y - y_d) | (y-y_t) |
1.6666 | 0.041666667 |
1.6666 | 0.041666667 |
1.6666 | 0.041666667 |
1.6666 | 0.041666667 |
0.3334 | 0.333333333 |
0.6666 | 0.666666667 |
0.3334 | 0.333333333 |
0.3334 | 0.333333333 |
1.3334 | 0.291666667 |
2.3334 | 0.708333333 |
1.3334 | 0.291666667 |
1.3334 | 0.291666667 |
1.222233333 | 0.284722222 |
MSE
Model developed in part (b) 1.222233333
Model developed in part (d) 0.284722222
(MSE 0.284722222 < MSE 1.222233333 ) so Model in d) is more effective as MSE is less
Hope this will be helpful. Thanks and God Bless You :)